Connecting Undergraduate Plant Cell Biology Students with the Scientists about Whom They Learn: A Bibliography

Author(s): Randy Wayne and Mark P. Staves

Source: The American Biology Teacher, Vol. 60, No. 7 (Sep., 1998), pp. 510-517
Published by: University of California Press on behalf of the National Association of Biology Teachers

Stable URL: http://www.jstor.org/stable/4450534
Accessed: 12-11-2015 14:31 UTC

REFERENCES

Linked references are available on JSTOR for this article:

You may need to log in to JSTOR to access the linked references.
Connecting Undergraduate Plant Cell Biology Students with the Scientists About Whom They Learn: A Bibliography

Randy Wayne Mark P. Staves

Name the best scientists the world has ever known. Have you ever read anything by them? Perhaps not. Certainly most students would answer “No,” and yet as Albert Einstein said, “Everybody ought to . . . and . . . become directly acquainted with the best.”

We teach an undergraduate Plant Cell Biology class (BioPL 444) in the manner proposed by Jean Baptiste Carnoy (1884) when he established the first institute of cellular biology. That is, we integrate mathematics, astronomy, physics and chemistry as well as anatomy, physiology, ecology and evolution with cell biology. Thus, the students are expected to understand a wide range of sciences. We feel that the best way to understand cell biology and its corollary sciences is to take a historical approach and give the students a working knowledge of the scientists involved. Often students remember the science when it is accompanied by an anecdote, and we tell many stories about the scientists as we lecture. Where do we get all the stories? From books written by the scientists themselves. We provide the students in our course with a list of these books for them to read at their leisure. The students are not required to read any of these books during the semester.

The books we selected were written for the lay public or a general scientifically literate audience. They provide the students with an enjoyable entrée into the lives of the scientists, their personal philosophies, their senses of humor, their outside interests, the theories and experimental techniques they used, the results of their research, and the relationship between their results and those of the past and future.

Most importantly, students learn the excitement of discovery firsthand from the pioneering scientists. They also learn the human elements that may capture their attention. For example they can learn that Humphry Davy, the discoverer of calcium and potassium, loved salmon fishing, wrote poetry, and experimented with the mood-altering effects of nitrous oxide. They will find that Svante Arrhenius barely passed his doctoral exam. They learn how many scientists had to escape the tyranny of Hitler and how others, including Linus Pauling, were harrassed by the House UnAmerican Committee in the United States for their views on nuclear fallout. They can see that had Martin Kamen not been persecuted by the government for his leftist politics, we might be calling the photosynthetic carbon reduction cycle “The Kamen Cycle” instead of “The Calvin Cycle.” They can discover how important microorganisms have been in our understanding of photosynthesis in plants. They can discover why George Beadle decided to work on Neurospora and why Albert Szent-Györgyi began work on Hungarian peppers and potatoes. They can contrast Erwin Chargaff’s perspective about the discovery of the double helix with that of James Watson or Francis Crick. They can learn how Per Scholander developed an understanding of the cohesive properties of water from walking on the beach. They can learn that Alfred Wallace, the cofounder of the idea of evolution by natural selection, was a defender of and a believer in spiritualism. They can also discover that Joseph Priestley, a discoverer of oxygen, was a founder of the Unitarian Church. They may be surprised to find that while Mathias Schleiden, the cofounder of the cell theory, attempted suicide many times, Ludwig Boltzmann, Rudolf Schoenheimer, and Emil Fischer succeeded. They can also read about Jacobius van’t Hoff’s views on imagination in science.

The book list that follows is not exhaustive and is updated yearly as we read more. Most of these books are available from the libraries at Cornell University and can occasionally be found at a used bookstore.

Today, many scientific works are dry and hard to read, perhaps intentionally. Easy-to-read scholarly works are usually not included in classes for science majors or even known to the students. They are not referenced in textbooks. Thus, students may get the opinion that difficult-to-read works are the hallmark of good science. We want the students in our class to write clearly and creatively when they communicate science. Thus, we find it important to acquaint the
students with easy-to-read works of great scientists. This gives them the realization that many of the great scientists communicated their work through understandable, interesting and imaginative writing and thus makes this kind of science writing acceptable to the student.

This year we gave the students a creative writing project as a final exam. This was the first time we had given such an assignment and the first time any of the students had even heard of such an assignment. Yet they accepted it warmly and performed exquisitely. We feel that they were open to this assignment and empowered to do it, in part, because they were exposed to the following bibliography which provided substantial evidence that many of the scientists about whom they learn were comfortable writing creatively about science. The text of the 1995 final exam follows:

"I have been very impressed with this class as a whole and would like to try a different kind of final exam. You can use your notes or any other reference.

For the final, begin by writing an introductory page describing to your reader the dimensions of time, space, force and energy encountered in the cell. Perhaps you could start with values known to the reader and work your way down progressively.

Then write a creative story, using as much cell biology as you can. Let us know what it is like for a vesicle to move through the cytoplasm, and how easy it is for a proton. Let us know what it feels like to pump out 1000 protons per second at the expense of ATP, while other proteins get to make ATP as the protons passively move through them. What is it like for a gene that will create a flower to sit there, unreplicted, while the housekeeping genes replicate? How would a protein feel, when its best friend, synthesized like itself, is rushed into the chloroplast because it was born with a transit peptide? Is this fair? What was it like when the first cell evolved, or when another cell was captured to make energy for the victor? I would rather that you discuss many aspects of cell biology than limit yourself to one. I hope that a layperson can learn a lot about the cell from the cell's point of view from your story. I'm sure that you have hundreds of ideas.

Although there is no length requirement, perhaps 10 double-spaced pages would be optimal. I suggest that you speak with me as you write this so that we know what each other is thinking. It is due in class at the time of the final exam. Of course you have the option to take a 'regular final.'"

The response was overwhelming. One student wrote a story from the point of view of a chloroplast in a tobacco plant outside a cell biology meeting. Another wrote a children's story book. Still another wrote about a cellular theme park, where each organelle was a ride, and an actin monorail took the visitors around the park. One student passed in a personal journal of a protein; another the memoirs of a ribosome; still another wrote a series of short stories about each organelle; and we even got a transcript of a cellular musical and a poem.

We hope that this bibliography will also be useful for high school and freshman biology teachers as a source of anecdotes and stories about the adolescent years of the scientists. This may help the students identify with the scientists as people and instill in the students a love for science and an appreciation of the human aspects, humor and beauty of science.

The Course Bibliography

ANNOUNCING

BioTools

HIGH SCHOOL BIOLOGY LAB CURRICULUM

- TEXT
- TEACHER'S MANUAL
- INSTRUCTIONAL VIDEO TAPES
- INTERNET ACTIVITIES TEXT

CONTACT: HEALTH-SCIENCE, INC.
5500 Prytania St., Ste. 213
New Orleans, LA 70115
Fax: 504-522-5132
Email: Hesci@AOL.com
www.healthscience.net

PLANT CELL BIOLOGY SCIENTISTS 511

NATIONAL ASSOCIATION OF BIOLOGY TEACHERS
MEMBERSHIP APPLICATION

Complete and return to:
National Association of Biology Teachers
11250 Roger Bacon Drive, #19
Reston, Virginia 20190-5202

☐ YES, I want to join the National Association of Biology Teachers (NABT) and receive all member benefits, including nine issues of The American Biology Teacher, five issues of News & Views, convention and publication discounts, and more!

Dr./M ____________________________
Address __
City ____________________________ State _________ Zip _______

☐ Active member, (U.S., Canada, Mexico) $52/yr (U.S. check or international money order only)
☐ Foreign member, $90/yr (U.S. check or international money order only)
☐ Student member, $28/yr (open to regularly matriculated students not in full-time employment) Signature of faculty member required below:

☐ Retired member, $28/yr (retired; 10 continuous years as an active member)
☐ Spouse member, $20/yr (when accompanied by an active membership)
☐ Sustaining ($520/yr) or Organizational ($125/yr) member (corporate membership)

Professional Information
Please complete the following to help NABT better serve your needs:

1. Professional Class (check no more than two)
 ☐ Biology Teacher ☐ Department Head
 ☐ Supervisor/Administrator ☐ Teacher Educator
 ☐ Student ☐ Other _______

2. Teaching Level (check one only)
 ☐ Elementary ☐ Middle/Junior High
 ☐ High School ☐ Two-Year College
 ☐ Four-Year College/University
 ☐ Other _______

3. Interest in NABT Sections
 ☐ Elementary/Middle School Section
 ☐ Two-Year College Section
 ☐ Four-Year College Section
 ☐ Role & Status of Women in Biology Education
 ☐ Multicultural Affairs Section

Payment Method
NABT accepts checks drawn on U.S. banks, VISA, MasterCard and international money orders.

☐ Check enclosed or charge to: ☐ VISA ☐ MasterCard

Acct. # ____________________________ Expiration date ____________
Card holder ____________________________ Signature ____________________________

Index to Advertisers

Academic Press..507
A.D.A.M. Software...537
AnimaLearn ...521
AquarEd...497
Bio-Rad Laboratories...Cover 3
Brown University...549
BSCS..509
Cargille Laboratories..515
Carolina Biological Supply CoCover 4
Connecticut Valley Biological......................................499
Cross-Eyed Cricket Wildlife..547
CyberEd...539
Dev-Coa, Inc...525
Defiance College..538
EME Corp..493
Forrest T. Jones..553
Harwood Academic Publishers.....................................551
Health-Science, Inc...511
High Performance Systems, Inc......................................503
Howard Hughes Medical Institute.................................539
InteliTool, Inc...523
International Zoological Expeditions............................483
Island Expeditions...549
Kendall/Hunt Publishing Co...556
Logal Software, Inc...485
Montana State University...501
NABT Affiliates...495
NABT EdPress Winners..529
NABT Membership Form...516
NABT Member-Get-A-Member Winners........................526
NABT Publications Order Form....................................508
NABT Sustaining/Organizational Member........................492
NABT Web Site..495
Peregrine Publishers, Inc..519
Prentice Hall..512, 513
Prior Scientific..517
Rensselaer Polytechnic Institute.....................................541
Scott Foresman-Addison Wesley....................................535
Skulls Unlimited...523
Society for Neuroscience..525
Swift Instruments, Inc..543
Texas Instruments..542
Vernier Software..527