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QUANTUY THEORY I L.

Theory of Svectral Lineg. The frequency of cach

spectral line is given by the difference of two terms,
which represent the energy of the atom in certain " station-
ary" states, divided by Planck's constant h,

Each stationary state is characterized by particular
values of a certain number of quantum nuwbers. In the
theory as it was first developed, these values were integral
nunbers; in later times, half numbers have been introduced also.

In simple cases the problem mey be completely solved.
Tne first step is to integrate the ecuations of motion, thus
finding out the motions that can exist according to the laws
of ordinary dynamics, The next step consists in quantizing
these motions, i.e. in selecting the stationary states by
suitably chosen gquantum conditions. For the higher atowms
it is impossible exactly to do all this, Yet the principles

of tine theory allow us to form a general idea of the origin

of the different spectral lines and of the relations be-
tween then, Afte.r all, however, there are many outstanding i
difficulties, the solution of which will perhaps have to be

sought in the new quentum mechanics that has been worked out

by Heisenberg, Born, ‘Schr'ddinger and others. To begin with,

there will be no question of this, but only of the theory,

the principles of which were laid down by Bohr.

Bome General Remarks., The diversity of spectral lines

in any case depends on the number of guantun numbers. If
there is but one such number n, so that the energy is repre:-
sented by an equation of the form

E=F(n »
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there is a single eeries of stetionary states and of corres-
ponding energy levels and spectral terms. When there =are

two quantwa nwibers nj. Y E = F(nl, n there will

a) s
b¢ & double series, and so oi.

Any cause that proauces & greater diversity in tae
spectral lines (f.i.a nagnetic field thet produces a Zee-
mon effect) does so by giving rise to the introduction of
a2 new guantwa number,

The guantuz nunbers may occur in 2 nunber mich smaller

than that of the constants of lntegrationthat would deter-

aine the motion of all the electrons, Yet, they zust suffice

fortiie deternination of the energy. Otherwise, the spectral

lines would not be sharo.

Discrenancy Between Bohr's Theory cad Classical Dynamics,

Principle of Corresnondence. According to the old theory

of electricity an c¢lectron would racdiate energy whenever its
velocity is changed either in magnitude or in dirocctiom,

The electrons revolving around the nuclcus of zn atom would
procuce electromagnetic waves spreading outward, whose fre-
quency would be equal to that of the motions to which tuey
are due., Boar's theory denies the existence of tais radia-
tion. e atoms are supposed to radiate only when thiey pass
from one stationary state to the other ("quantum juzpsh);

he frequency of tho radiation determined by Boar's rule i s

different from that of the motions existing in the atou.
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Never theless, there is a kind of correspondence he-
tween the motions and the radiation. Consider the case
that inthesemotion of the electronic system there are a
certain nusber of fundamentzl periods, the freguencies

being Pys Posy Pgy o+ v o o o e

Then each of the coordinates of the electrons may be repre-
sented by a multiple Fcurier series, each term of —vhich
nag *he forn

acos[(s, P, ¥ 8 p *§ p3+....)t=hq] (1)

where s, , 5, . are integers. . According to classi-

X NP
cal dynznics the partizl motion represented by (1) will give
rise to a radiation of the freguency

8] Py * 85 Dyt Sy Pt .. (2)
This includes the fundamental frecuencies, the upper harmonics
and also the combination frecuencies. In a case like this,
Bohr's theory distineuishes os iany quantum numbers ny, ng,
ng . . . . 28 there are fundamental periods, each n cor-
responding to a p. The relation between the two is expres-

scd by the formula

dE _ h & E _ .
EE_ p17 a—_-;l._l_ pg e e e e s (5)
1 2

Suppose that the number nq changes from a to b ( < a),
the other guontun nuubers remeining unaltered, and let the
mean value during this transition of any function f(nl) be

determined by




1 £(n) an,
o~-b b

Then, one con say that vhen b=a-1 the frequency of the light
to which the jump Ny = a->»0n) = b gives rise, is equal to

the mean value of psq. For this frecuency is given b&

. R a

E - & 4dE —a

a L = 1 = o} = R -
—&_ D Tl-fb 20m; fb p, dny = B (4)

Similary, if b = a - 8, (~sl cn integral number) the emitted
ffecuency will be equal to 8y tires the mean value of Py -

Indeed, in this case (&) is to be reploced by

//ﬁa' p,. dn = s_pr
o 1 1 171 (5)

Suppose now two of the guantum numbers ny and n, to change

simaltaneously, the one diminishing by sland the other by

8y - Inogine these changes to occur in two steps, first
the tronsition from n, to n, - s, and then that from hg t0
The total changer of energy will be ecqucl to the

n2 - SBO
sun of the changes occurring in these steps and therefore

the enitted frecuency will be the sum of the frequencies that
would correspond to the two steps, cnch taken by itsclf. This

lecds to the e=pression

)

8. D, + 8. B

1P 2 3
anc by 2 similer recsoning, supposing any number of the
quantus nuibers to be altered, one can ebtain a result, much

like (2).




It should be especiclly notod th~t according to the
ney theory as well =5 to the old one, decomposition of lines
by cny externcl influence mny be considered as due to theap—
pearcnce of o new fundomentnl period in the motions of the
electrons.

Motion of o Porticle Subjected to 2 Centrnl Ferce, the

Relativisy Terms Being Tokan into Account. A well known Te-

sult of the theory of relativity is that the
mouientum of a particle moving vwith velocity v is given by
(6)

nmaovVv
where

a = . ‘.
1l -v
} 2 (7)

In this formula the mass m is 2 constant. Let U be the po t~

enticl energy (2 function of 7). Equationsof motion

d ( AN a U ad o
—— (B ax ) = - = . =2 (mgy) = -4 U :
at ax ST (8)

Equation of energy. Add these equations after having multi-

plied them by X and § . Since

. d- L] . [ d_ 2 * e . e
x gt (max ) +y %E(mocy)=a:;(mav)—-ma(::::+yy)=
Y 2
= EQE ( mavg) - m02 %‘ = a % ( moc )

onc f inds

S (ano®) = - &L
dt dt




(6}

mac® + U =E (constant) e e e (9)
Equation of moment of momentum. Subtract one of the equations
(8) from the other after having multiplied the first by y and
the second by x.

The result may be written in the form:
0=x g% (may) - v 35 (mok) = %}{?a (zy - yk)] ,

Thus

mo (xf - yx) = ¢ (constant) . . . . . . (10)
By the introduction of polar coordinates r, €@ eq. (10)

takes the form

aorS6 = O O ()
But .
v8 =3 + %% ... ... .. .. (12
so that
2o 324 C .
12023

If here the values of o and v exzpressed in terms of r, which
can be found from (9) and (7), are introduced, one is led to an
eoguation of the form

$3 2 £(2), woe v e e e e (13)
giving

t__dr .. (1)

Vaion

Integrating this equation one finds the relation between r and %.

at

it

On the other hand, on account of (11)
C + Cdr
dat = _ ’
marg‘l . margH'szrj

dé =

by which the shape of the orbit is determined.

-
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Closed and Open Orbits. Precessional Motion of an

Orbit in its Plane. In many cases the function f(r) is

found to vanish for two values Ty and To of the radius
vector (Il <: 13) and to bec positive only in the inter-
val between these. This means that there is a perihelium
and an aphelium. As to 6 it changes continually in the
same direction, so that the particle is revolving around
the centre.

There are iwo periods, one in which r changes from
T, to To and back again, and one in which & changes by 2m.

In the case of an attraction according to Coulomb's law
(motion of an electron around a positively charged nucleus),
and when the relativity terms are neglected, the two periods
are egual, so that the orbit is closed (ellipse). No more
than one effective guantum number is to e expected.

In general, however, the periods are unecual so that
there will be two guantum numbers. The orbit is not closed
but has the form of a rosace. The motion may be described as
going on in a closed orbit rotating in its plane.

It ought to be remarked that whereas the number of funda-
nental periods becomegtwo, either by a departure from Coulomb's
law or by the influence of the relativity terms, it remains
two when the vwo causes are combined.

Quantization of the Motion in an Elliptic Orbit.

When the central force follows Coulomb's law, the potential

energy is given by

, (15)
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Whereas, in the abesence of relativity terms, the Iinetic
cnergy is given by

T = % mv3
or

T =2 w(i? + 226 (16)
The partial derivatives of this eﬁpression with rcspect to
+ and § are the momenta corrcsponding to the coordinates
r and @ ,

R: = ur , P, = mr? 8 (17)

There are two gquantum conditions (though it will be found
that there is but one eifective guantum numbher). The first

isthat Pg > which according to (11) is a constant, must be

a multiple of

h
m—
aTm
say
_ . b8
Pp = X 2q
Thigs isthe azimuthal condition. It may be put in the form
fn
| pya6 = kn, - (18)
o/

if the integration is'extended to a complete revolution.
The second condition (radial cuantum condition)has

the similar form I8 b

: | ppdr = nh, (19)

if the integral is agaigjtaken for a full period. The

numbers k sne n* (k azimuthel, ni'radicl quentum number)

determine magnitude and shape of the orbii (major axis and

excentricity)
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How doesthe Energy F = U + T depend on the Quantum

nusbers? Instead of (18) and (19) one can write
o r-

Kh = p, 6at = | mr63as (20)
- ~ . o/ .
n'h = [ p rdt = f’mrzdt, (21)
o/ \‘j

Adding these equations one finds
(k + n¥) n = J{o 2 Tdt (22)
All theintegrals have to te taken over a full period.
At this point two well know theorems may be used.
1. Between the period P and the energy E there is the

relation —

(E is negative.)

2. If T and U denote the mean values for a full period

T=-17
3
and therefore
o - —
T+U=-T
or
T=-F
Eq (32) now becomes -
(k + nl)h = -~ 2 EP = nia -F
E = — 2nSam
If ~e is the charge of the electron and Ze that of the nucleus
2n3z3e4m

E = —~
(x + n¥)2n3

k +n'% n is the "Total'quantum number.
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Size and Shave of ellivtic orbit determined by the

Quantum Numbers. Eg. (13) becomes
Lahnl P 2

i‘g = :.E + E..;E'. — ..C_..__._

m> n3r8

If 1, and T are the values of r for which the expression on
the right hand side vanishes, the seni major axis of the ellipse

has the value

L= X (r1+ To) = - &_. {relation between
2 SE
energy and major axis), or
oo
1, = AR (24)
q
dm~am
Further
9
~N oo
T = — -
172 JEa

so that the ordinate p at the focus is given by
23
p = fa¥g - KB (25)
L 4m®am
The lengths L. and p are therefore determined in the same way
oy the sqguares of the numbers n and k.

Eccentricity of tiae orbit

.,\/; P .

AV]

n
Series in the Hydrogen Spectrum. Z = 1 and
chh
E=-"y2 ,

(¢ velocity of 1light), if

2.4
R = ﬁﬂmisﬂ (Rydberg!s constant) (26)
c

One obtains Balmer's series, when n is supiosed to change from

5 to 2, aad from 4 to 3, etc.
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Freguencies cR (% - % ), cR(% - %

'~
o]

), etc.

Similerly, the frecuencies in Lyman's series are

Of=

cR (1 - %), cR (1 - &), etc.

Value of R fro. observations 109875, calculated by means of

(26) 1.09:10°

Justification of the GQuantun conditions. According to

Planck the energy of a simply harmonic vibrator with the period
P muet be a multiple of %g Thus, the time integral of tae energy
taken over a full period must be a multiple of h. Since, for
a simply harmonic vibrator, the mean values of the kinetic and
of the potential energy are equrl, the time integral of the
kinetic energy must be a multiple of % h.

The quantum conditions that have been applied to the hydro-
gen atom are simply extensions of this rule to each of the de-~ ]
grees of freedom corresponding to the coordinates r and O.

The corresponding parts of the kinetic energy are

1 mr? and 1 mrd68
3 2

and the cuantities thet have been taken to be multiples of h
are just trice the time integrals of these parts.

When the central force follows a law different from that
of Coulomb, it is natural to follow the same course and to use
eg. (18) and (19) as the quantum conditions. They will serve to
determine the constants of the orbit, and the energy, in terms
of k and n'' One can still define a principal quantum nuinber

by the equation

n=%+ n',
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but the energy will not be deterzined bty this number; it will

depend in a =ore complicated way on k and n' {or on k and n).
(18) and (19) have also been used when the relativity

ter.as are taken into account. Only the monenta prand pg have

in thie case been defined Ly

26

pr = nar, pa = nor (37)

A Proble: that can Serve as an Introduction %o the The-

orexa of Adiabatic Invariants. A ball is suspended by a wire,

which is neld between two fingers somewhere below its upper
extremity, which is fixed. By sliding the fingers up or down
one can gradually change the lengthf of the free portion of
the wire. Let @ be the angle which this portion makes with a
vertical line.
Coordinates (x vertical, downwards)
x = const. +-12(oos g - 1), y = {sin 6 (28)
Equation of motion
fa + 2}9 + /ES:LHG'*' g sing = 0 (29)
This is found, either by directly considering the accelerations
and the forces or by the application of Lagrange's equation.
From (28) one finds for the’kinetic energy |
- % m( 22 4 3 fsin 0 06 + 31~ cos 9)1)5}
whereas the poftential energy is
| U = const. + mg,f(l - cos @) .
Substituting these values in Lagrange'!s equation

aL _
at ( ) de ~ 0

Where L = T - U (Lagrange e function) one obtains (29).
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Simplification. Let ,f vary so slowly that during a full

period, the change is very small in comparison with ,2 itself.
Then terms w1th,Q2 or Ag may be neglected. Suppose further that
“is so small that sin & may te replaced by & and 1 - cos € in
the expression for U Ly %- 98. (By the latter assumption the
motion is made to be simply harmonic, When,ﬂ is constant).

Ec. (29) becomes

/gé’ + 2.[9 + g6 = N (50)

If ,6 were constant the solution would have the form
¢ = a cos (nt + p),

with constant values of a, n and p. When g changes, (30) can
te satisfied by the same expression, provided that a, n and p
be taken to be suitable slowly variabie guantities. However,
the energy only has to be considered.

D efine ¥ by

E = % nlB53 4 % mg .ty ° (31)

This will be exactly the energy if AL remains constant, and it -
will repres?nt the energy with any recuircd degrce of aporoxi-
mation 1if /g is small enough.

Calculate the rate of change of %, using eq. (30) after

multiplication by ‘Eé

Y £ e 1 r.':_-]
a{(m )= D02 65+ & ede” + glao

S DB F ee®) (%2)
Since /g is very small, one may calculate the last factor as if
,Z.were constant. Even, since /ﬁ may be considered as not chang--

ing during one period, that last factor may be replaced by its
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mean value for a full period.
According to a known theorem the mean values of the kinetic
and the potential energy are equal in the case of a simple har-
monic motion. Thus, if . is constant, the mean values of the

teras on the right hand side of (31) are each equal to L E and

2
the last factor in {(33) may be replaced by
B, LE 1 E
- mf 2mk - T 23 mb -
Thus, multiplying by n
®_ _ 1,4,
at -~ 2E3
d{log E + % log k)
Tt =0
EVY = const. (33)

Since the period P of the vibrations is proportional to VCZ.,
one may conclude from this‘fhat the product EP or the value
of E divided by the frequeﬁqy remains constant when the length
of the pendulum is slowly altered.

The quantﬁm condition for a éimple harmonic motion is
that the energy is a multiple of h tiames the frequency.
Eq. (33) shows that when this condition is fulfilled at a cer-
tain moment, it will be cohtinually satisfied.

Eg. (33) can also be found by calculating the work that is

required for moving the fingers. Replace these by cylindrical

rods held in a horizontal position and having perfectly smooth
surfaces. Then the tension of the two parts of the wire must
be the same. Let it be & at any moment. Then the two tensions,
acting on one of the rods, will give rise to a resulting force

having a vecrtical component
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S {1 ~ cos 6)

{(positive when upward) and ?he vork per unit of time will be
A [i-cos 6,.

To the degres of apoproximation reguired (S = mg, this becomes

T

v~

so that

3 _ 14 g,

at
agreeing with what has been found.

R clation betwcen the mean kinetic and the Mean Potential

Encrgy in the case of Forces inversely oroportional to tiae

Scuare of the Distance. This relation, which has been used

in the gquantization of the moticn in elliptic orbits, can be
deduced from the so called virial theorem.
Egquations of moticn for a systea of .saterial points
my ¥ = Xy, m¥q = Ty, myEy = D, moXs = Xo, ... ..
Thus i
:E'(XX + yY + z2) = zg-m(?ﬁ + yy + 2zZ) =

= — 3T + gz-.zgm(xi YV R ZZ) e e (SSY
The sum on tae left hand side is called tie virial V. Let the
motions be exactly periodic and let mean values be taken over
a full period. Or, when the state of motion is simply station-
ary, take mean values over a long interval of time. In both
cases, tine last term in (53) vanishes. Thus
V= - 2T (34)

Now, in the case to be considered, the potential energy U is a

homogeneous function of the coordinates of degree --1., so that
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<7 ay 4au au
V= - 2 (x gz Vay * Zdz Y =10
by which (34) becoumes

=-2T

o=

Adiabsatic Inverients. Conservation of guantization.

In the problem of the pendulum it has been found that, if at
one time the quantum condition is satisfied, it will remain soO
forever, when the length of the pendulum is changed very slowly.
Enrenfest has shown that a similar result holds in a great
nuriber of cases,

The cuantun conditions can ve continually fulfilled rhile
the circuastances under which the .iotions tazke place, say one

define

or @ore paraseters whichpthese circuustances (and waich are
comparable to the length of tae pendulun) are gradually altered.
Indeed, it is found that the guentities to vhich the guantum
conditions ascribe certain definite values, are just suci taat
they remain constant during thae slow variations in question.
These are Ehrenfest!s"adiabatic invariants." The theorem 2ay
be called that of the conservation of gquantization.

Exasples of the changes thet may be imagined to occur
(always very slowly) without violating the quantun conditions.

Not only the intensity but also the law of forge may be altered.

If a force is represented by fq (r) + S {fz (r) - fl(r)} ,
it will change from f{(r) to f5(r) if the parameter S varies

from O to 1. External electric or magnetic fields may change

either in direction or magnitude. HMoreover, the mass of a

particle may be considered as variable. If, in .case of a




variable m, the equations of wotion are tzken to be

a .
it mx) = X, etc.
(and not mx = X, etc.) the principle will hoid. Finslly tae

o

relArtivity ter.us may be gradually introduced. One may f.1i.
take for tne momenta of a particle the expressions
m X
V1 - av?

If the paramneter S changes froux 0 to~% one passes ’‘gradually
¢

, etc.

from the old to the new definition of momentum.

Let A and B be two states of motion of a system, such that
one can jass Ifrom one of thew to the otiaer in the way now under
consideration. If it is possible to formulate guantum rules fer
both cases, the theorem can be proved.

It may also be that the simpler one of the two cases say
A admits of quantization, but taat one is at a loss how to
guantize B. Under these circumstances the stationary states
B may be defined as arising by gradual changes from the stati-
onary states A. ‘

Certain restrictions that must ve kept in axind will be
considered later oan.

Change of the Energy of a Systes When the Circumstances

under waich ii Moves are Slowly Altered. Let the configuration

it

be determined by certain coordinates gy, Qqp, aad let the motion

be determined by Lagrange's equations

%{ f%%ﬁ = %% = 0 (for each coordinate) (35)
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Lagange's function L has in siwxple cases the form T - U; it
‘nay however be considered now as ary function of the coordinates
q and the velocities g. It will be supnosed to contain, in ad-
dition to these quantities, one slowly variable parameter s.
The quantities

d

aa =D
are the momenta of the system.
Equation of energy

G (4L) - gaL = & (4aL) - ydb - §dL

—

at dg dq dt dq aq dg
Thus, if on the right hand side of eq. (25) one had the gquantitiesn

Q (forces, not included in L) one would have

(aQ) = S (8Ly - < (gdl+ &by . . | (3e
S (4Q 5 2qdq) f_qdq qdq (36)
If s were constant the last term would be %L .
Thus, if
Ezé'_@.l_‘—L,..........S'?
, (qdq) (37)

Z () = &,

showing that E is the energy, the sum on the left hand side
being thework of the forces § per unit of time.
Now, let s vary gradually. Still defining the engergy by
(37) and putting Q = O, one mey remark thet thelast sum in (36)
dL

is not eoual to 3t because the ter

aL

S__.
ds

is wanting.
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Thus
dE _ _ 4L -
& T - Sae .(328)

Here if s is small the last factor may be calculated as if s
were constant.

Let the parameter s fiist have sone constant value, the
motion being periodic in this case, If then s is wade to
change extremely slowly, the relation between the changes of
g and E during a full period or during a time comprising a
great number of periods will be as follows (if both changes
are very small.)

dE = - ds . {39)

H

=

the stroke indicating the mean value over a period, calculat-
ed for the original motion.

Influence of the Relativity Terms in the Case of an El-

—— S

liptic Orbit.

Let Lagrange's function be

L=§{1~\/1—sv3}+% . ... . (40)

1

Where s varics slowly from 0 to 3

Q

The components of the momentun are

. omk alL m

V1 - sv8 , a§. Vl - sv:2

and the energy has the value

aL
a%

e dL e QL m 1 a
E=x==+y ==L ==} rm————— - ‘} - =
dx dy 8 [\/ 1 — evd T

Tae first term, the kinetic energy, tends to the limit

% mv® when s diminishes indefinitely, and tukes the value
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V']Cg

4

' 3
-~ EBIC
\/ 2
1- ¥3
o3

for s = L
cd °

Let the original motion, with s = 0, be a revolution in
an ellipse deternined by the quantum numbers k aad n' and let

now 8 gradually increase to the value . One has the relatiza

owll-'

aE = - ds .

&18l

and if the total change is sizall, one may therefore calculate
it by the formula

O €5 B

alel

E - E. = — &_

) 02

where the last factor is given the value which it has in the
originel =otion.

Now, substituting in (40)

vV 1- svg = 1 - % sv2 - %sgv4
one finds
=L avd + L onsvd + 2
L 5 av 5 8v 5
Thus
4L 1
a‘gzé-l’lvd‘,

by which (41) becomes

B

E - E = o B v4.
© 8c?

In order to find the mean value of vt in the elliptic =iotion

one can usec the equation

L a
Zxﬂvz—-'{"z EO 5
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which gives

v

v4=-€‘;E02+§E—°-‘1+-4§ ~1—§
e e ) T

The firet torm is conetnont, and the mean value of the

16

i
becausc the uean value of the potential energy -

: 3
Eg

y

a0

<ois
It rcnains therefore only to calculate the iecan value

This is the ratio beitween the integral

1
Igdt
T

taken over o full period, and the period itself. But

equal to
rdzr

\/(Io“r) (T“Tl)

=~

multiplied by a constant, ancg one is therefore led to

ratio between the integrals of the expression

_ dr
MVACEIEE=N
and of (42), both taken between thelimits rq and ry.

The integral of (43) is
L
Viits

and that of (42)
% m (rl + rg),

so that the nean value of l§ beeoones
T

second is

dt is

.(42)

the
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3
(Il + 1'3) \/ 1’11'2 !

for which, on account of former reletions, one may write

4in EOB )
kag
Finully 5
3E 1
E - E, - (4 )
mne

which corresponds to Sommerfeld!s formula limited to the
first terms.

Influence of the motion of the nucleus, Let the index 1

refer to the nucleus, and 3 to the electron.

~Llv341 242
L= 5 m1vy© + 5 Ny + 3
If my varies slowly,
- . aL - _ 1 4. 23-
dE - dml d‘nl "é' vl dl--ll . . . . L] . [] (44)

Thus, since the .iean value of the total kinetic energy is

- E, that of T1 is . _
e °
my + Ry

. - l R
and that of -2- vl

il 3

mi(ml + mgl

Eg. (44) therefore becomee

dE o )
= dml

E ml(m1+m2)
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n]
By + g

E = const.

The constent ic the valuc Eo vhich the encrgy has in the simple
theory, where the .ass of the nuclecus 1is considered as infinite.

wereforc, if the mobility of the nuclecus is taken into account,

n
E = 1 B
., + m o
1 2
Hamilton's Principle in g simple Case. Let a point

rmove in & space in which tie potential energy U is & given fune-
tion of the coordinates x, y, z. Consider a "natural" motion '
(one that can really take placé) along sowe patk™ from a point
P0 to a point P, these points being reached at the tiues toand
t1 .Let the values of t, x, y, z be altered to an infinitely
small extent, the variations being dt, ox, SY, Sz, and supvpose
these variations to be any continuous functions of the time t.
Corresponding to each position P (x, v, z,) on the path, there
will be & varied position P' (x + 5, vy + By, z *+ 02) and one
can conceive a " varied motion" in which the succesgive varied
positione are just reached at the successive varied times t +38% .
Te varied motion nceds not be a natural one.

When the variations 3t, dx, dy, Oz, have been chosen as
functions of the coordinates, not only the coordinates but also
the yelocities will have definite values in the varied motion,
80 t?at=for it, as well as for the original motion, Lagrange's

; function I will have a determinate value.

The problem is to determine the difference between the

L
- e,

value of the integral
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R =/ Wt .. . . . . . . . ... {(45)
o/ o

for the original .uotion and the corresvmonding integral R' for the
varied motion. QR = R!' — R. The symbol 4 will serve to denote
the change of a guantity in the time dt, and the symb01 5 will
refer to the variation of a guantity, a definite value of % or
a definite range of t veing kept in view.

Let tl, t8 be two successive instants, tS’ t4 the corres-

ponding veried tiues. Then, the original value of dt is tg - tl,

and its varied value t4 - tz. Thus:

3at = (t, = tg) = (b5 — t1).
On the other hand, the variation Ot is tS - tl at the instant

tl, and t4 - tg at the instant tg, so that
adt = (t, - t5) - (tg - ;)
and
3at = adt .
Similerly
ddx = ddx , etec.

The calculation of SR is a$ follows,

ax Sdx  dx . adx . adt
== - 2=a XN = =NA L 2N ste.
it~ at " gif 0% = gy T * Tax 0 o

Or, using Lagranges equations,




AY]
(9]

d(rat) = d§ (py Bz} - [E(A %E,) - L] adt
X

= ézg (pKBx) - 24dt

BR =SS (p,00) - > (p8x)g - 38ty = k) ... - (46)

From now on, the varied motion will be supposed also to be a
netural one, so that two natural motions are coupared with eaca

other.

In the given field of force a natural motion will be deter-
mined by the initial and the final position and by the time during
which the transition from the first point to the second takes
place. Eqg. (46) shows how the integral R changes, when these

data are altered.

Action. Define a new cuantity W by
T \
W =R+ E(t] — ty) = Ldt + E(ty - tg) .. .(47)
t
0

Then, in virtue of (46)

W= S (px)) - > (o) ¢ by = Bp) BB e e (48)
W is called the "action" along the path, and (47) may be

written in the form
5

W = 2Tdt s (49)

o

The motion will now be considered as determined by the initial

and the final position and the energy E.

1. Consider all motions that can take place with a given en-
ergy E, if the point starts from a chosen initial position PO in
all possible directions. In one of these motions some given point

P, or P (the index 1 now being omitted) can be reached and (49)

will have a definite value for the motion up to thi point .
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This value will depend on the coordinatcs of P and on the energy

E. According to (48)

aw _ aw aw
a-x- - px, a-S,-.. = py’ -d—.‘i = pZ o . . D . -(50)
aw__
SE= b m by e e e e .(51)
2. These results also hold in another case, Let 8 be an

arbitrarely chosen surface and consider all the motions starting
with a given energy, from pointe of this surface in directions
normal to it. A point P +ill be reached again by one of the
different trajectories, and if W is the action up to P, one is
again led to (50) and (51). Inceed the term > (pxsx)o in (48)
vanishes when Py 1s . displaced in a direction perpendicular to
the initial velocity.

In case 1. W is the action reckoncd from a fixed point;
in case 2. it is the action reckoned from a fixed surface.

Hamilton-Jacobi's Partial Differential Equation. Substi-

tuting the values (50) in the energy equation
2 o R
2 (p® +py® + p2) +U=F

one obtalns

aw, @ aw. 2 N
(%) (a;) + (33)

This equation determines W in function of x, vy, 2z.

=Zm(E-TV) . ... ... (82)

Az has just been shown the action W reckoned from an arbitar-
ily chosen fixcd surface‘satisfies the differential equation. Con—
versely, any solution of the equation, say

W=7 F (x, vy, 2)
will represent the action up to the point X, ¥, %, reckoned from

a fixed surface, naamely from the surface




F (X’ y’ Z) =O'
The expression on the left hand side of (53) is the

square of the gradient of W, i.e. of dw if n is the direction

an’
of the normal to the surface W = const. Thus, the equation
prescribes to the gradient the value

V% M(E - U)
at any point of space. ‘
/
F
‘F‘
‘P'
X& .,P

Yoo

Hence the following geometrical solution. Let F be a sur-

face in which W is supposed to have soume constant value a. Draw
normals to F, starting from different points P in the surface
and on each of these normals take an infinitely small segment

PP' of the length

Q

\/% n(E - U)
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a being a constant infinitely small guantity. Then, at the
surface Fﬂvpassing through the points P' the action W will have the
value a + &, the same all over the surface.
In a similar way a third surface W = const. can be deduced
from 7' and the distribution of W over space can be found step by
ctep.

Hemilton's Principle and the Principle of Least Action.

1. Let the original motion be varied in any way (so that the
varied motion meeds not be a natural one), but with thc restrictions
that neitherr the initisl and final nositions nor the time t; - %,
required for the motion from P, to P,, shall be altered. Then, on
account of (46
( ) . F) ]

R = 0, E// Lit = 0 R € 1<)
This is Hamilton's principle. It has been dediced here by assuming
the validity of Lagrange's equations of motion, but conversely these

equations can be deduced from (53)

3. Let the motion be varied in such a way)the extreme positians

again remaining unaltered)that, the energy conserves the same con-
stant value E which it has in the original motion., By this condi-
tion, when the varied path has been chosen the velocity at any of
its points, and therefore the manner in which 1%t 1is travelled over
in course of tiwme wi 1l be cowpletely -determined.

Eq. (48) now becomes

SR =-E3(t; - t,).

and by (47) '
W = 3R + BO(t, - tg) =0

i//)ZTdt =0
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This is the principle of least action. It may be written in the

form S
vds = 0, P 79

if ds is an element of the path.

Fropagation of rays gj_;igg§4(ip\iggt;gp}g_m@dia). The

foregoing considerations apply to the motion of the corpuscles of
| light in Newton's theory. Suppose such corpuscles first to move |
in vacuum and then to enter a ponderable body, which may be in—
homogeneous, or a system of such bodies. Assume further that
originally the corpuscles have a definite velocity vo. Then, if
a corpuscle moves from a point P, in vacuum to a point P inside

a ponderablebodv, the velocity v at this latter point will be

determined by

1 2 _ 1 3
5 nve = 5 MV, + UO -~ Ul

when U, is the potential energy at Pjand U that at P. The velocity

will be independent of the direction- in which P is reached; more-

over it will have the same value at all points in the interior of

a homogenous body, because U has the same value at all these pointz.
In any case the motion of corpuscles starting with a given

energy from the points of a surface F in directions normal to this

surface, can be found by the construction that has been explained.

8o the course of rays of light is found; they are the orthogonal
trajectories to the surfaces F , F' etc. Tﬁe course of rays of light
can also be deduced from eqg: (54). ;
There is a far going analogy between these theorems and those |
that hold in the undulatory theory of light. Here the guccessive %
positions ¥, F', . . . (sc2e the foregoing figure) of a wave front i

are found by Huygens' construction which in the case of isotropic

media, amounts to this, that the wave front F' at time t + dt is %
i
!
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‘is found from the wave front F at time t by taking along the
normals the segments PP' equal to udt, where u is the velocity cf
light.

The values of u vary from one point to the other in the in-
verse ratio as the values of the velocity v that had to be assum-
ed in the corpuscular theory. In connection with this it may be
remarked that, whereazs the scgments PP' between F and F' were just
now taken proportional to the velocit ies u, they were formerly
taken inversely proportional to v, So the two theories can leac
to the samne surfaces F and to the same system of rays, which are
perpendicular to them, with this difference, however, that if one
starts from F at a definite time; the points of F' will be reached
at the same instant in the wave .theory but at different instants
in the corpuscular theory. Corresponding to eq. (54) one has in

the wave theory the theorem

@f%=o (55)

that can be deduced from Huygens' construction (Fermat's principle).

The Solution of a D _ynamical Problem can be Made to Depend

Entirely on tahe Hamiltoan Jagobl Egquation. Returning to the mction

of a'partiaie in a given field of force, suppose that one has
found a functiocn W, satisfying the partial differential equation
(53)), and contaiuning (in addition to E) a nou-additive arbitrary
constant a, Then the quantity

aw
da

will be a function of x,v,z, E and a. This function has the

property that it has the same valué all along a path of the point,




proof: W(a) is the action reckoned from a certain surface F;
similarly W(a + da) is the action reckomed fron a surface F' in-
finitely little different froa F.
Let AP and A'P he the paths leading
with the same energy E, from F and
F! to point P, the first path start-

, ing from A at right angles %o F, ani

the second from A' at right angles
to F'. Let the path PA eventually prolonged,_intersect F' et the
point B.

This, at the point P,

W(a + da) = W(A'P), w(a) = W(AP).

But W(A'P) may be replaced by 7(B¥), because A'B is at right anglus
to the path A'P. (Indeed, 1f in (48) one supposce€ the final posiiiow F
to remain unaltered and the initial one to be snifted at right
angles to the path, one finds from that equation end (47) dSW=0
T herefore

W(a +da) — W(a) = W(BP) - T(AP) = W(BA)

dW - W(34A)
da da

which hasthe same value for all points P of the pathAP., The re-

gult is that for any path

aw _
a‘g—b) -..'. ........(56)

£

where, however the coastant P will change from one path to another. |

If one had a solution of (52) containing two non—additive
congtants a and a' the equations (58),

SL.
da'
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oend (51) would contain the complete integration of the equtions
of motion. Taree relations between x, y, z, t with six constants
E, a, b, a',b' and t,.

Generalization. . The position of the system determined by

coordinates gy, @ monenta p,, P Lagrange's functicn

2!
ﬁéi =T -~ U. Eg. (468) remains true, with the change only that toz

first two menbers on the right hand side are replaced Ly
- ~ ;
> (pdaly - S {pBaly
Action W agoin defined by (4%). Instead >f (50)

at o, aw
ay- =1 GQg

= Pa, R € Y2

av’

vhereas (51) remains.
The kinetic energy can be expressed as a homogeneous guadrati~

function of the mementa

S A 3
T=5e13 P+ - FaPPp T

Replecing nere Pys Pgs - - - by their values taken from (57), and
remembaring that
T+ U=28&E

one is led to Eaxziltcn Jacobl's equation

= 8 :
L 2y (55 B L _
In any special rase 814> al2 . . . are xnown functions of the

coordianates.

When one has found a function W satisfying (58) and coantein-
ing besides E, a sufficient nuwber of non additive constants a, a!

(one less than the number of coordinates), the eouestions

%:b, %—z%-‘:b',......-....(sg)

together with (51) contain the complete solution of the problem.
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Rexarks: In the undulatory theory there is a close connection

batween the course of the ravs and the form of the wave fronts,
the raye being (in isotrozic media) at right angles to the wave
fronts.

8imilarly, in the cese of a particle moving in a constant

fiela of force, ths path is always perpendicular to tine surfaces

Il

¥ coast. (whether W be taken from a fixed point or from a fixen
surface). Tais follows Irca eq. (268) a1 (47). If £.i. the firal
position P,is disoluced in the surrcce W = coret. nufeliang tarouvgl itj
one has

= (p8x), = O,
showing that the direction of the displacement 3z, , Sy, Oz is per-
pendicular to that of the momentun Do Py ., or of the velocity

N

z
in the path.

When successive possitions of & surface W = const. are fourd
by the construction that hes been explained, the infinitely shoi i
line PP' being perpendicular to the first surface F, P'P'' per- ?@
pendicular to the second suriace T and co on, the line PP'P''....
will be the path of the point when 1t starts frca P at right anglen
to F and with the energy that hasheen caogcen.

In less sicple cases, a system with n degrees of freedom, and
n coordinctes g the gosition of the system at any time can be |

n

represented by a point P in angimensional gpace and the system may

be said to describe a path or a line in that space. An equation

W = const. represente a " surface" and at any point where such a

their directions. !

|

t

]

i

surface and a path intersect there is a definite relation between l
|

!

|
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Herelton Jacobi's couation, which now nas the form (58) again
leads to a geometrical solution of tie problem. Sterting from a
surface F one can determine the successive positions of a surface
W = const. and at the same time the vaths of systems starting from

F with the given amount of energy.

=i

XAMPLES: 1. A matsrial —noint free from any force U = © A solu-

tion of Hemilton Jacobils equation 1is

Tz [Ty (@rz\EEoa-a. ... (0

Equations of the path

aw - W~
da - O e
or
7=- 2. = 2b, ¥ fz - 2b! (81)
a W/ZmE—a—a' al 2k - a - a'
Further aw _ 4 -
dg -~ * ~ ‘Yo
or
2 — =t - %, . L. . (82)
2mE - a - a' :

2. A particle aoving in 2 vertical plane; x norizontal, ¥ vositive!
downward. U = -mgy.

A solution of the partial differential ecuation for W is

1 —
W=xVa + ‘”?T—'\/YZmE - a + Bmagy)é
3u~g

From
aw _ . 4T _ g L
Ge = b and 3§ = £ 5,
2 .
X - L~/ (2mE-a+2mgy) =0 . ... (B4

oT y=C (V== -~ b)d + C!
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L]
.

_7}@" \/?Bmea+2m8gy) =1t - 1,

or

y = % g (t - t,)% + const,

Motion of zn Electron Around 2 Nucleus in a New System of

goordinates.
‘ 7 Let © be the angle between the plane
Q v Pe paseing through 02 and the position
3 o?-—--—w—x P of the electron, and the fixed

plane X0Z; v the distance from O;

/ the distance PQ from the amis 0Z; 0Q

l
| .
’ %L—
‘ = z x=j0089,Y=jSin9

Z and Z are rectangular coordinates in the plane ZOP, which in

general rotates about C0Z.

|
|
|
|
i Choose ag coordinates

U=71+ 2, v=r~-2z and 8.
£2=r2—zg=uv

X = ‘\/uv cos@, V= v/ﬁ;sin e, pA =%(u-— V) .. (67)

1 utv 22 utv 2 N 1
T—Em(~———4uu + gy v +uve) .. e e e e e ... (88) ]
L Udv S o gy UtV S - A

py=me-u, po=m gV, Py T mve . . . . . . .

When the potential energy does not contain the angle &

- aw _ .
pe—-de——G............(7U)
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Hamilton Jacobil's eguation

du QW3 4v_ (dWB . 02

== - 2m (\E - =
utv Gu utv  'dv == - 3m \E - U) = 0.

Attraction LY nucleus according to Coulomb's law

- _ & - . B8&
U= T utv
and after multiplication by % (u+v)
awy 3 anme . 1 31,1y _1 — am = -
u (du) + v (dv) + g2 C (u + v) émE (utv) am =0 . . . (71)

vhen there is an external electric field F in the direction

of 0Z (Stzrk effect) one has to add to U a term

+
- Fo2 = - % Fe (u - v)

and on the left nand side of (71)

aFe (U3 —v3) . e e (72

]+

Supnose the electron to be repelled by the line OZ wth a force
inversely proportional to the cube of the distance. Then, in U

there will be 2 term

= ol

jsb)

jﬁ§ uv
and on the left hand side of (71) a term

1
+"\_T-)

ma' ( ,

s
u

Wi+

which combines with the ter:m with 02 that refers to the rotation

of the plaﬁe ZOP.

. (73)
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Separation of the Variables. In all the cases just mention-

ed one can satisfy ‘the vpartial differential equation by an expres-—

sion of the form

W=1W, + Wy + Wy,

in which W, is a fuhction of u only, W, of v and W, of &

3
Wy = C8, according to (70)

and in the case of eq. (71) with the addition (72) Wl and W, are

determined by

dWa 2 1 ¢° 1 1 2
B P — e —— P — —
u (§~0 + i 5 mEu 1 nFeu am + f 0 . v v e (731
v (de)Z } 1 02 1 mEv + 1 mFeVg f =0 (74)
i J 2 l . . . - - - . - L]

where f is a constant, These equations lead to expressions of the

form

Q
=
—
il
+
«
o
il 2
&=
D

=tv@2—ﬁﬁ . . (75)

so that, W, and W, are found as integrals. |

o,
d
1
l_.l

Quantum Conditions. _Gonsider the case that Gl(u) is

positive only in the interval
u, < u < u,
and Gg(v) only in the interval

vy v <: vy

The first variable will continually oscillate between the fixed
limits u; and Uy (depending on the values of the constants that
occur in the formulae); similarly, v will oscillate between
v, and V. The third coordinate @ changes continually in the

same direction.
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. . avw, dW-
Now, since o~ and dvu ere the volues of the momenta p,

and P> the integrals

af 7 /ey
du = 2 3. (ujdu
v

2

2 pvdv
Vi

can be found in terms of the oonstants, The first and the seconG

and

oguvantum conditions: are

[ e
2 p1du = n.n , _
O/ul u 1 2 vy pvdv = nah

and the third is

¢ = h_
R 2m
or
2T
%de =n§1

These are the conditions used by Epstein in his theory of the
Stark effect.

Interpretation of the guentum conditions. The kinetic

energy can be represented by
1 .
T =35> 74
It may be considered as made up of parts

1 o
5 Pq

each of which belongs to one of the coordinates. The quentum
conditions mean that the time integral of the part of T which
corresponds to a definite coordinate, calculated for a full

oscillation of that coordinate, must be a multiple of % h,
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Indeed if q[ and qz'are the extreme veluss of the coordinates

considered, tais time integral is

dsg Qs
.l -
ff 3 padt =f pdq.
d, ay

IN the case of the cocrdinate & a "full oscillation" must be
understood to rniean a change by 2am.

Different modes of Quantization of an Elliptic Motion. The

ordinary quantization (quantization I, or quantization in the plan-
of the orbit) introduces two quantum mumbers k and n'; the energy
is found to dépend on the surt k + n'.

A quantization (II) can also be based on eq.(71). It in-
troduces three quantum numbers and leads not only to definite
elliptical orbits but also to conditions concerning the position
of their planes with respect to the line O0Z in the last diagram.
(Space quantization).

The two modes lead to different results. A motion that
satisfies conditions II will not satisfy I.

Yet from I and II one finds the same values for the energy
E. This is seen as follows.

Let ny, Ny, N be the quantum numbers introduced in II.
Then the time inuvegrals of the parts of the kinetic energycorres-
ponding to u, v,80 , each taken for a full oscillation, will be

1 1 1
3 nh, 5 ngh R > th.

But in the simple case now considered, the oscillations have one
and the same period P. Thus the mean values of the parts in

gquestion are

|
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1 1
= n.L, 55 ngh, = th,

giving for the zean value of the kinetic energy

.
= (ny + n, + n

55 (my + 0y + ng)h

wherees in the quantization I the mezn value was found to be

(>y an ezactly similar reasoning)

%§ (x + n')h.
Thus the two guantizations give the same values of T and therefore
the game values of E, on account of the realation vetween T and E,
When one wants to apply Ehranfest's theorem to a hydrogen
atom placed in en electric field F, first supposing F to be zero
and then making it grow up gradually to its final velue, the"in-
itial" quantization must be effected, not in the manner I, but ir

the manner II, with respect to the direction 03F, which the field

F is going 1o have. This is the "restriction® that has been

mentioned already.
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Helium Ato:n. Model Prcposed by Bohr, Worked out by van

Vleck and Kraners.

A Let, on a sphere around the nucleus
O, ACB and ADB be two mewidian circles,
Pl\ interuecting the "equator" at points
O c C and D. Suppose the electrons P and

b Q at first not to repel each other and
Aéé%fg// to move with equal constant velocities
B - in the two meridians in the directioms

indicated by the arrows, in such a way that when one is in C, the

other is in D. Then they are constantly placed symmetrically with
respect to the 1ine-whioh bisects the angle COD and which will b=
taken as axis of 02Z.

Thislpeculiarity of the motion will continue to exist
when now the mutual repulsion is mede to come up gradually. In
the final- state also..,when the repulsion has reached its full
value, there will be this kind of symmetry. Fach electron may

then be said to be repelled by the line 0Z with a force

&3
- . o2 O 4423
if is the distance from that line, and it will be sufficient

to consider the motion of the electron P only, using the coord-
inates u, v, @ +1hat have been introduced in connection with
a former diagram.

The vector representing the resulting moment of momentum

will constantly have the direction 0Z, and in the final state

its magnitude will still be what it was initially. The angle
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between the circles AC and AD is taken to be 60°, in order that
not only the initial moment of momentum may be %; for each elec—

tron separately, but that the total moment of momentum have that
same value.

Van Vleck and Kramers have calculated the energy in the
final state and have compared their results with the ionizatim
potential, the value of which, as deduced from observations is
34,6 volts.

In order to take into aacount the force (768) one must

introduce a potential energy
_e?
af
1.2 /o [V,
g e ( v " u)

on the left hand side of eq. (71). The consequence is, however,

leading to a term

that the variahles can no longer be separated and it was, there—
fore, necessary to use a method of approximation.

If one introduces the potential energy

8 22? (77)
and supposes & to increase very slowly from O to 1, the energy of
the system can be found in the form of a series

E = EO + sE1 + ngg + .. 0 . .
The term sE, can be easily found from the inisigl motion by means
of the theorem expressed in eg. (339). The next step is much
more difficult to make. Eq. (39) can still be applied but it is
necessary to determine, up to terms of the order s, the changes
in the motion that are due to the potential energy (77). Van

Vleck made the two steps. Kramers, on the other hand, used a

0
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device by which the first step already led to a result which he
congiders as sufficiently accurat~. Having remarked that the
motion. can be rigorously determined when the electron is repelled
by 0Z with a force, inversely proportional to the cube of the dis-

tance 80 that there is a potential energy

- !

i?g e e e e e e e ... (78)
he first works out this case, and he then introduces an addition-
al potential energy

8(9-2——5
i 7=
where 8 increases from o to 1. When the: constant a' is chosen in
such a way that in the mean. during a revolutiom of the electron
the force deduced from (78) differs as little as can be from the
real force, the approximation is very satisfactory. Kramer's re-
sult for the ionization potential is 20, 7 volts.

Precessional Motion of the Planes in which the two Elect
trons Move.

The problem now under consideration presents itself also
when there are two valence electrons moving around the core of the
atom.

Consider again the problem that was treated by means of the
coordinates u, v, © . If there is only the attraction by the
nucleus the motion determined by (71) will be the ordinary one
in some ellipse whose plane makes a certain angle with the axis
0Z. The formula

o =L R € <)
mz’z

that follows from (69) and (70) determines the rotation of the
plane OZP which, combined with the changes of u and v (or r and z)

in that plane, give rise +to sch an elliptical motion.
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When there is the repulsion resultingfrom (78), the third
term in (71) is revlaced by

1 3

{1
Q

[

<[

+

4
Sy ),
1 2

2
where = C” + 2ma'

Q

If now the plane OZP rotated with the angular velocity

Cl
nf?
the orbit would be a stationary ellipse described in the ordinary |
way. But the velocity of rotation is still given by (79). Hence,
there will now be a motion in a stationary ellipse, combined with
a rotation of the whole system about 0Z, with the angular velocity

¢ - ¢
m {3

In the real case of two electron<their orbits will both |
show this precessicnal motion (in thesame direction) about the
axlis 0Z, which hasyéirection of the vector representing the re-
sulting moment of momentum.

If there is sach a precession .in the case of two particlec
whose mutual repulsion is inversely proportional to the cube of the
distance, it may also be expected to exist when the repulsion fol-
lows Coulomb's law. Assuming that initially the circular motions
go on with an angular velocity n, one finds by an approximate
calculation (for She helium atom) that the velocity of the preces—
sion will be of the order of magnitude of O, la4n.

Mutual actions Between the Electrons due to their Magnetic

Fields. This question ismore or less connected with that of th
3.

relativity terms. These latter are of the order of magnitude Xg
c

compared with the other terms in the equations of moticn. Simi-

larly, the forces between two electrons arising from their magnetic

B

— ey
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fields, are of the order of magnitude _1 23- The factor .1
c C:

occurs 1n the expression for the magnetic force which the first

. v
electron produces at the place of the second, and the factor -%

is introduced when, from this wmagnetic force one deduces the
force acting on the second electron.

When higher terms are neglected, the problem of the motion
.of a systen of charged particles may be nade to depend on the fol-:
lowing form of Lagrange's functior:

G.Zi = > mo? {'1 - ) Seer [ (ev) Vtr}- (80)
08 4y 2C 202

(rational units). The first sum refers to all the particles and

the seccnd to all the pairs of perticles. The symbol (v.v') rep-
resents the scalar product of the velocities v and v' of the par-
ticles e and e', whereas v, and v', are the components of v and v’
in the direction oftthe line joining the particles, these compon-
ente being taken with the same sign when they are in the same dir-
ection. Replacing l§ by s and making s change very slowly from
0 to lg one can, af%er naing effected an initial cquantization, deter-
mine ghe influence of the magnetic action on the energy in a stati-
onary state by means of eqg. (39).

This method can be applied to an electron circulating around

a core that has a certain magnetic moment. In ealculations of this

kind one has to teke into consideration that if all moving parti-

cles have the same % (nucleus at rest) the magnetic moment of a

gystem is equal to the moment of momentum multiplied by
e
oma

Conservation of the Moment of Momentum. The momenta of

one of the particleg are
o7, ol oL
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and the first component of the total moment of momentum is

S/AD R - T

dgz

or, using Lagrange's equations,

M

.......}..:R'FS
dt ?

‘ Zz
(y gé:_ : &9

where

R= :Ei dy
S =:§E (y %ﬁé z %%;-.

It is easily seen that § = 0 insofar as only a factor depending
on r is differentiated, and that R = O insofaras it depends on
the first term in (80). One has therefore to show tha%t R + 8 = 0,
when one substitutes for;fi (considering one pair of particles)
either
(vev') = XX' + yy' + z2' S € =)

or QQ' , when

Q= (x-x') x+ (y-y") v + (2z-2') z

Q' = (x'=x)x' + (y'-y)y' + (z'-z)z!
Substituting (82) one finds for the two particles

P= (y2' —zy) + (¥'2 - 2'y) = 0
On the other hand, whenaii = QQ', the contributions of the first
particle to R and S become

{j& (z - 2') =z (y - y’)} Q!

and (v2 - zy) Q' - (y2' - z3') Q,

the sum of which is
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(y'z - z'y) Q' - (yz' - zy') Q.
If the contribution that is due to the second particle (obtained

by interchanging symbols with and without primes) is added to this,
the result is zero. It is to be remarked that the expression (8]

is somewhat different (sofaras higher powers of v are concerned)

from the ordinary value
>mn (yz - zy)
that is related in a simple wey to the magnetic moment of the
system.
The vector with the oomponentszy'%?é/yp4&/z remains constaat
in course of time. It remains somewhat doubtful however whether

it be appropriate to speak of a precession of the system around

a line having the direction of/é/ . This would be the case if the
equations of motiom would be come simpler when transformed to .
axes that rotate about this line with a suitably chosen velocity.

Larmor's Theorem. Theory of the Normal Zeeman Effect.

Consider a system for all the movable particles of which
% has the same value (nucleus at rest). Let there be no external

magnetic field at first, and let the system have a certain motion

relatively to a stationary system of axes 0X, OY, 0Z. Then, when
an external magnetic field (uniform all through the system) gradu-
ally comes up, the motionAﬁll continually be the same with respect
to the axes 0X, CY,6 0Z, provided that these are made to rotate at
any instant with the velocity

g=-x=H ... ......... .. (83
Here H, representing the magnetic force, and g are vectors.
The theorem is true so long as gquantities of the order of’HB may
be neglected. It holds for any change of H, either in magnitude

or direction, or in both together.
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Suppose now that the figld H has constantly the same direction.
LGEX&( be the moment of momentum of an atom, an%/lkg its camponent

in the direction of H. Let the initial quantum conditions (H = 0)

” A =t '
.H=n—2—T—; ...........(84)

(n magnetic quentum number). Then change of energy produced by

gradually starting the magneiic field will be

_ eh
g/é/H--‘n_mmc H. . .......(s85)

This leads to the explanation of the Zeeman effect in its

simplest form. The change of (85) for a change of n by + 1 or
- 1, after division by h, determines the separation of the lines
in a normal triplet.

Spinning Electrons. For the sake of simplicity the electron

is congidered as a sphere of invariable radius R, having a charge
e, uniformly distributed over the surface and no other mass but

the'electromagnetic" one

‘ 3
-

Gﬂch

Let the sphere rotate with the angular velocity g (a vector).

Magnetic moment: eRZ
M = =5
a 3c ©
e3R
"Moment of Inertia": Q = 3
18mic
Homent of momentum: Qg
Energy: % Qe® .
The ratio between the magnetic moment and the moment of momentum is
=
me

. ce s a .
twice as great as it is for,system of revolving electrons,
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Let the electron be placed in a magnetic field, the strength
H of vhich is a given function of the time. It is acted on by

two couples, the one [MéH] (the vector product of Ma and H) and

the other B eRg ﬁ

3¢C :
When the magnetic field gradually grows up from H = O, and when
the electron has initially a magnetic moment Ma‘o’ the magnetic
moment at any later time will comsist of two parts, one with the

magnitude

- 20RH
in the direction of H, and the other the original moment Mao
such as it will be when it has constantly been rotating with

the angular velocity

- - _u.
me

Now apply the same guantization as in the case of the
revolving electrons. Taking (84) as the gquantum condition:/é/
now being the moment of momentum of the spinning electron in
the ihitial state, one finds for the change of energy produced

by the magnetic field

eh

- 0 Zyme B

twice the change (85).
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General form of Lagrance's function for Moving Electric

Charges. The clectromagnetic field depends on two potentials,
the scalar potential V and the vector potenvial A. Let U be the
volume density of the electric charge, v its velocity. Then, at

a certain point P, and at a chosen instant t, the potentials are

determined by the equations

Y AT |
V= 411/ r 48,

Azi—f%‘-’l ds,

d1c
where ds is an element of volumeand .r its distance from P. The

braokets'[ ] serve to indicate the walues of W and .uv which
existed in ds at the time t —-% (Retarded potentials):

In the last equation pv and A are vectors.

From the two potentials one can deduce the electric force E and

the magnetic force H, by means of the vector equations

E= - % A~ grad Vv
H = curl A

The function 1
Lo %-w/pqus + ggny/nu (v.A) ds . . . . . . (8&)

plays the part of Lagrange's function. Only those parts of space
in which there is an electric charge contribute to Its value.

Application to an Electron Revolving Around g nucleus and

having at the same time a rotation about a diameter. From

(86) one can deduce the following expression for the Lagrangian

oZi = 3 mv + 308 — dp7 * JC» Coee e (87)

where -41 is an additional term depending on the simultaneous ex-

istence of the two notions.
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L - ;—'—‘:3 (v.[v.g]),

Vx, VY, VZ

¥
Loe o B Ty Yl (ee)

gx’ g'y’ gz

In the first term of«lz the relativity quantities have now been
neglected.

e! charge of the nucleus.

Q moment of inertia of the electron.

g, with components 8x> Bys Ez» its angular velocity.
Certain higher terms (with v, g) have been neglected.

Equation of Motion for the Translation of the Electron.

The above form of-xﬁ differs from the ordinary one in so far as
it contains not only the velocity but also the acceleration. The

ecuations of motion can still be derived from the theorem that

t
{/J; L at =

when all variations are zero for t, and t,. - But, “hen‘xg contains

x, x and X, SoLwill oontain

%.;éém %}%CS{; + %.5 S%

the second term can be replaced by
doﬁ
and similarly the third one by

sleloiog ()50} + £, (&) &x

at

dt (doc) dx

Remembering that termsof the form dK vanish when the integration
' dt
with respect to the time is performedand equating to zero the

coefficient of 5x, one finds
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_Ak, 4 dak, a®
dx ~ dt‘dx

After substitution of (87) and (88) tais becomes
nk = €e'% 4 _7mQ { 4 a?

e (v - v g) + 3 (v.g - v g.)
a8 208 L at o yBz T VaBy’! T Tom WyBaT Valy }

Tat*t (g;'?) =0

etc.

The last term in these equaticns represents an additional force

acting on the electron and due to the combination of the two motions.

Omitting terms in g and g onc finds for the components of the

additional force

g% (Vygz— Vzgy), etc.
It is at right angles to ¥ and g, being in fact determined by the
vector product of these two vectors. 1In the case of a circular
motion ¥V has a direction opposite to that of v; hence, if g is
normal to the plane of the orbit, the additional force is directed

towards the center or away from it.

Icuations of Motion for the Rotation of the Electron.

Here, in the funotion:ﬁ', one is only .concerned with velocities.

Now, Lagrange's ecguation
( aP
a df af _
Zi"d‘t‘(dq)éq’dq 89} =0
may be replaced by
I

L@l -sL=0, ... ... (89

where 8§ & is the change of JS when one passes from the original to

the vafied motion, and
! g:.&..
§ & = :E 5 8q

is the change that would occur, when the variations that are in

reality applied to the coordinates where applied to the velocities.
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Let OA be a diameter of the electron, having a fixed posi-
tion in this particle and whose direction constants at the tinme

t are j, k, £» Then, on account of the rotation

- R € o
dt ~i%y kgz, etc (90)

Let the variation of thc position or the virtual displace-
aent be an infinitely small rotation a about OA, a being independ-
!
ent of t. Then &L = 0, and 5<[i will be the change of L when

gx> By, &z are given the varlatlons ja, ka, Ha. Thus
,C

SoC Jdg +kdg +’8dg)a

and, on account of (90)

4 (§'L) - {

. ad ~
(dlg) + etc. + Cég - kg ) 7 + etc:j a
at ‘dg g z' 48,

Sﬁbstituting in (89) and separating tae terms in j, k,—é'one finds

he equations of motion

4 (ady

(Qe=) + - ,
at ag, 8, dgy gyag T T

ol ol _, (91

/
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If one omits the additionsl termczf in the expression (87)

for Lagrange's function, one has simply

o _
Gg; | om %%z ek ?%‘;é= %;

and (71) becomes
Q’O‘ = O, ng = O’ ng= 0 s

showing that the angular velocity of the clection remsins con-
stant in direction and magnitude.

/
Introducing now the additvional termclf’one has

/
gg: = -1 (v v - v v;), etc.

or / / /
ol ol L
dg_ Ky ag. ~ Ty dg, Kz
X Y Z
when the vector X is defined by
K= - T8 v.ﬁ] (¢2)
202 [- ’
The last vector meaning the vector product of the velocity v
and the acceleration v.
The equations of motion (91) for the rotation are now
2 d'K” S
e, = - EE& - Eygy + Kzgy, etc.
or
Qg=—K-[K.g] s (93)
/
The additional Terms Waich Depend on li,Cbmpared with the
Principal Terms.  The additional *term ./, Cefined by (88) is

of the order of magnitude

M i,
3¢

where the lest three factors iandicate the absolute values.
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. ! 2
Hence the ratio ofcli to % mv” is of the order of magnitude
WE_ v=m Qg | ¥
myc? myy oo

2

But vr is cf the same order of magnitude as v Therefore, when

the romenta of momentum Qg and mvr are of the same order of mnagni -

tude (as they are on account of the quantum conditions applied t»
- - - ’ 2
them) tae ratio between‘ze and % v will be o. the order Ka .

CL)

The additional terms will lesd to small displacements or
separations of spectral lines.

Moment of Momentum of the System. To a first approximation

this is
~/4Q£= m[;r.v]-+ Qg T €2
(r means the vector drawn from the nucleus to the glectron), com-
pounded of the momenta due to the translation and to the
rotation. But there are additional terms. In the first com-
v

ponent the additional term is (when terms of the order I are
c

are negleoted)

_Zd_é

Effect of the Additional Terms on the Motion of the Electron

(diEA y ddﬁ'— z —T— . ...(95)

ydz ydt atd

The additional force whose first component is

e - 2 g )

g — Vv
CB y ©z z °y

leads to a slow vnrecessional iotion of the plane of the orbit, due
to the rotation of 'the electron, the anéular'velbcity of this

precession being 3
en .
S8 T .(98)
acm
where n is the frequency c¢f the mnotion in the orbit.

This result has been obtained for the case of a circular

orbit but provably it will te possible to generalize 1it.
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As to the motion of rotation, the first term on the right
hand side of (23) will produce a small variation in the angular
velocity g, which however is gero after a complete revolution
in the orbit. In the caseof a circular orbit at any instant % = 0.

Thelast term in (93) produces a precessional motion of the
spinning electron, the angular velocity of this precession being
- %, or , according to (93)

T [v.ﬂ [ KD

202

consider again the case of a circular orbit. Then

so that (97) becomes

3
oo [r.v]
2c2
and the two precessions (96) and (97) are

‘1'1'1'].8 // nng
and ! /é/ ,
8m 8 208m !

c
if/Aﬁé and/éfz are the two parts of (8%). The precessional motion.

may therefore (nearly)be replaced by a comson precesgsion
2
T /Ll
Bcgm
The precession (97) of the spinning motion can be compared with
the precession that would take place if the nucleus had a certain
velocity w and thereby produced a magnetic field H at the place °
the
of,electron.
A
Let W be the scalar potential produced by the nucleus.
Then the wmagnetic force in guestion would be

H= — %[v\ grad V] ,

giving rise to a precession
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e
T H = 2 w.grad V]
or 1
I
because v = — % grad V. The result would agree with (97) if
= - 1 ‘
W= - STV, P €223

Equation of Energy. When Lagrange's function oZicontains

coordinates g, velocities d and acceleratiens g, the equations of

motion are

acﬁ) dob a doﬁ
dt dq at3 dq
and the energy has the value

E{q gf d(;& él,it ( } o@ . . (100)

Indeed, one finds by differentiating this, taking (99) in to ac-

count, 5
aE _ 5 (qd,t,+..d;>z€+ ol o 4L
at s tdgg rdag ) T 4x

=0, « v oo (99)

= 0.

0 re
If the function d:/oontained, besides g, q, q, a slowly variable

parameter s, the last equation would become

. Wi

E-.=.—-S——~——-
giving for & small change of s
dE=——ds%———£, P G (e
where %%Z is the mean value calculated for the o;iginal motion.
From eqc. (100) one can infer that the energy of the systen under
consideration consists c¢f the principal part
1

2 4+ L o2 4 g€
= mv® + = © 4 EE=
3 3 8 4mr

and an additional part which depends on<¥zvand will be found

to be

zoi’................(loz)
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Quantization of the Motions. The difficulty of finding

suitable oguantum conditions for ar atom in which an electron is
revolving around the nucleus and rotating at the same time can be
avoided by remewbering that the interaction between the two motions
depents solely on the additional part ch,of Lagrange's function.
replace the factor %5 in eaq. (88) by an parameter s and supoose
this to change siowly from O to lg . Then at furst, there is no
interaction at all between the t;o rotions, and one can easily la’
down appropriate quantum conditions, prescribing f.i. definite
values not oniy to each of the parts//ﬂé and‘/é%;of the momentun
(94), but also to/a itself. When the initial quantization has
been preformed in this way, the energier of the stationary motions
in the final state, when s = %5 will be known. Since the changes
produced by the additional terms are small, one may infer from
(101) that the change in energy winen one passes from an initial
to the corresponding final_Etationary state, is given Dy

—i/ .. . . (163)
the mean value of ;Z‘(in the initial wotion, with the opnosite

sign. It would be possible by means of this result to calculate

or to estimate the separations of the multiplets.
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Determination of the Change in the Energyv of a St.tionary

vate, Caused by the Svinring Motion of the Electron.

/
Ec. (88) ford may be written in the form
/o _ TS ;
af‘ - PR (g.[v.v])

Let r be the vector drawn from the nucleus to the electron. Then
Z e?
3

Vo= -

r’
mr

where, in the first factor r means simply the length of r. Thus

' Hg§ . e (g. [v r])
pefe

mr

m [ V. ;] = ;/é/l and Qg i/Z/B
Hence 74@ Zogm //é/ )‘"

b
i
and

- NEX /(/ /é/> ;’% ....... (104)

The mean value of-%-in the elliptic motion is ecual to the ratio .
T !
between the integrals ' '

o 1‘2 TZ
@//q dr ani//m TGr
T, 131/(r2—r) (r-1,) . }/(Ig—r) (r-1,)

1

But

The first of these is

Yiryry)®

2ol

i

and the sécond

L

5 (rl + T

5)
1
gso*that the mean value ofj?? is

1

]7?¥1r2>3 .
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Now (104) cen be expressed in terme of the cuantities belonging to
the stationary state as it would be if there were no interaction
between the two wmotions of the electron, energy E, , quantua nun-
bers k and n. Put
/Aéé —_ ,/KQ; : Zn ?
k and A! being eventually considered as vectors. The final resulv

for the energy is

2mn _E% (k,,p‘)] .. . . . .(05)

E=K 1+
0 [ xS me

It may be remarked that the additional term contains the factor EOB
and therefore 224

Action of an External Magnetic Field. This gives rise to two

new terms in Lagrange's function, namely

2
tom = £ (v.a) + 3R (g.H), .. ... (108)

where H is the magnetic force in the field and A the vector potenti-

al from which it can be derived. The first term leads to a new

force acting on the electron. Its first component is found by

substituting the value

£ (v.4) |
c :
for,Zf in the expression i
. }
ol a_aZy ' |
: dx ~ dt'dx |
The result is
dA da | dA dA
e =2 e e 107
c (v ax "y ax e ™ oo TH (207)

Let A be the rate of change of A at a fixed point in space. Then
at the place of the moving electron

dA. . dA dA, dA,

- A —
it x P x3x Ty &y Y Vz Tdz

. 1.
Substituting this value in (107) and remembering that - T Ay 18

the first component Fy o¢ the electric force, and that H = curl 4,
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one finds

oF, + < (volz= vgHy) . . .. ... .. (108)

. Similarly the last term in (106) leads to a new couple acting on

the electron. It consists of the parts i
eR% - :
- = H C e e e oo (209)
3¢
and

9%2 (e-H] ;l}Q;.HJ ... (110) é

The expression (106) does not lead to any new term in the equation

for the energy.

Influence of the Magnetic Field on the Energy of a Stationary

State. Let the field be produced by a current of intensity s

in a coil and let s gradually grow from O to the final value;

e
J
i

A and H will increase proportionally to s. The change in the energy
of a stationary state is found when the final value of s is multi-
plied by the mean value of
_at
ds |
taken for the original motion. The result depending solely on ;

(108) is

.2
vE -8 @D ... ... (1)

ol




63

The mean values in (111) can te calculated in two steps; first
average es 1f the precessional motions of the orbit and the azis of
rotation did aot exist, and then take the mean of the results for
all positions of the orbit and the axis that occur in the precession- f
al mot.ons, i

First step. Take into account the relation Qg ﬁ/big and the
values of Q and m one finds for the last term in (111)

- & (B
Further, let N be the normal to the plane of the orbit, drawn in thte
direction that corresponds to that of the revolution and is also
the dircction of/éifl. Let P be the period, ds an element of the
orbit, 4S5 an element of the plane limited by it, then

— 1
(v.h) = 5 _ 1 0/0
P oflsds =P HNdS.

Since HN has the same value at all points, the integral is equal to

the product of HN and the area of the ellipse. But, since the area ﬁ
described by the radius vector in unit of time is Sm the area of

the ellipse is 3/05 s, Finally, the first term in (111) becoaes
2

e e y@
-— zcm 1 HN - = 1.H)

201

If EO is the energy in the initial statlionary state (H = 0), the

energy in the corresponding state in the magnetic field will be

E=Eo—§g—ﬁ{(:.H)+2(/M2.H) Ce e . ()

where the strokes indicate mean values during the precessional motions
| The vectors/ill and /Lig both turn around the resultant vector

M. Let taic nave the magnitude

b

J 2m
and let it uake an angle O with the direction of H. Further, let
a be the angle between /Lél and /LL, b that between/tlg and /LL .
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The mean,/éiqis & vector of magnitude %; cos. a in the dir-
ection of[/éé and sinilarly /Léais a vector 37 coe. b in the same

dircction. Thus (112) becomes

Eon‘Z%gEH cos Q(k cos a+2/€cos ‘b),

or, after substitution of the values of cos a and cos b in the tri-

angle formed of the vectors k,4?, j, nanely
k2-+ jZ _/g 3 /ﬁz + jz _ k2

cos a = cos b =
2kj ’ 2l
- he 538 - k? + X2
E=Ey = Znom B 0os §.21 2] ’

& result similar to Lande's foraula.

2 . - A .
Introcduction to Schrodinger's "undulatory" dynamics.

Equation of motion of a stretched string.

d?f =1 d3¢
dx®  uwl at?
(f displacement of a point from its position of equilibrium).

. (113)

Similarly for a stretched membrane
2 3 2
a~f a”f . 1 4a°f

2+2""—2—8 .‘...........(114)
% dy u- dt
In three dimensions one can have vibrations determined by an equ-

ation of the form

2
6t y ot | % 1 o
dxs dyg az® uwf dt? ’
o 1 g3
Af = — = N (s £=9)
u? dtg

Here f may mean f.i. a small change of density (contraction or
dilation) that exists in an isotropic elastic mediunm.
. s 1 )
The coefficient == denends on the sttesses as they are called

u
forth or modified by the displacexents and on the density. It may

cnange frox point to point.




The velocity of propagation cf waves is given by u; it also Eé
mzy be a function of the coordinates, but since in (114) and . (115) |
the system has been supposed to be isotropic, u will be, at a given
point, independent of the direction. It therefore also represents

the velocity of rays.

The course of a ray is determined by condition (Fermat's P?

theorem) that between fixed points b
6 Jas_ _ |
— =0 U @ R 1Y

There are casss in which i must be considered as dependin on the
5 b
u

frequency n (dispersion); Then the "group velocity" v is given by

1qd (1’1)

— :l_l- . . . . . i . o 0 . LI (117)

v~ én

In what follows eg. (1168) and (117) are considered as definit-
ions of ray and of group velocity. These latter words will be us.é 1}
even if circumstances would be such that the words loose their ori- |

ginal physieal meaning.

Schrodinger!s Theory. Hydrogen atom.

Choose a definite value E for the.energy of the electron. The
potential energy is taken to be O when the electron is at infinite
distance fror: the nucleus. When, in the course of its motion, the
electron reaches a given point P, its velocity at that point will

be entirely determined.

2
Loavd - & o
5 v T E
2
WRB=28(E-+e)., ... ... ... . (118)
i T

The path of the electron between given points is determined by the
- principle of least action.

Sjvaa=0 ... ... ... ... (19

Schrodinger supposes, following de Broglie, that in the space . - |

around the nucleus there is a systern in which vibrations can exist
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and waves can be propagated, the distrubance of equilibrium being
rcpresented vty some quantity f., and the velocity of propagation by ui

Let it be required that the course of a ray in this system

coincides with a path of the electron. Frca (1168) and (119) it is

seen that the condition for this is that, when one passes from one

point to another, the velocity u changes in the inverse ration as v

a
U=, N & §=10))

where a is independent of the coordinates.
3. Schrodinger further supposes that the frequency (which of course
nust be the same all through the systen) is given by

E, + E
n= —5 R i £~

Here E, is a positive gquantity whose magnitude far surpasses thit of

E. One may take f.i. E, = mc?

4, Let it finelly e required that the velocity v of the electron is
just equal to the group velocity in the medium. By this the quautiiv%
a in (120) which may depend on E or n, is determined.

Indeed, on account of (117) and {120)

1 _d (n
v ~ dn (a v),
or, multiplying by ég v
-2
n_4d_ (n° .3
3 a dn (az ve).

Since, according to (118) v® contains a term depending on r, the

condition can only be satisfied if = is -independent of n. In this

case the equation becoues

a _d 8y _ 8 dE
8 n = dn (v7) = m dn
or if (121) is used,
_n g _Eo *E
" n dn n ’

so that the velocity (130) of the waves must be
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E, + E E, + E
u = —_——— = Y PN . (183)
A 22+ &2 ) .
T

This detzrninss the form 4 the equation of motion (118) for the

vibrating system. Since

3 3
d pa) Z_+ B
g = — 41°n3f = « 4nd <_9_~__l_ f L
dt he £k
the eguation beconmes . .
8mom - e-
Af+75 (E+7 )f=0. .. .. . .(3%9)
n i
This is Schrodinger's'"wave eguation." It determines the way in f

waich f depends on the coordinates.
It must be remarked that with a given energy E (supposed to ke

negative) the electron can never get beyond a certain distance from

the nucleus; for greater distance (118) would give a negative val::z

of v* . Never the less eq. (133) is applied through all space, even %ﬁ
to indinite distance. J{
Jusﬁfﬁn the case of a string, or a vibrating membrane or an i
elastic body there are boundary oonditions. Here they are simply
that £ wust remain finite at the origin r = 0 and aust vanish at
infinite distance. .
Scnrddinger has shown that these conditions can be satisfied

only when the constant E has one of certain definite values, namelv

" A
2t me®

1
E=- r\_——-. y « e s e
ne A3

where X is an integer. These are exactly the values that are found

(124)

in Bohr's theory of the hydrogen atom.

Remarks About Schrdédinger's Theory. From the values of the

velocity of propagation u and the frequency n one finds for the

wave-length u h
n 3
7/ 2m (E + &)

L---------IIllIliiiiiiiiiiiiiiii%%iilIlIIllIlllllllllllllllllllllll
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This uay be written (if for E one takes one of its particular values

ELZ)

8D
B 2T

-1+ 3 |

where ry and 2& are the radii of fhe one-quantum and ,{Z—quantum
circular orbits in Bolhir's theory.

The result shows that the wave length is by no means very sma11.i£

It is in many cases of the sane order of magnitude as the distance u

r from the nucleus. For this reason not only the words "ray" and

group velocity" have lost their original physical meaning but even

u can scarcely be sald to be the velocity of propagation of waves.
It is difficult to attach a clear physical meaning to Sohradinger“s
wave equation however interesting and fruitful may be the conseq -

ences that are drawn from it.

Frequency of the Imitted Radiations. lLet f  and f, be two
solutions of the wave equation, in which E has different values

E  and E, . Let the vibratory states represented by f_ and f, ,

with the frequencies

_ EO + B, 5 _ Eo + Eb

exist simultaneously, and suppose that for some reason or another,

Lan |

their superposition produces "cowmbination vibrations", with the Fug

. _ P ﬁ ider- !
guencies n, + nb and na nb ., The first of these nay be consider |
ed to be so high that it escapes observation. Schrddinger oconsiders
the'difference vibrations" as the direct source of the emitted 1ight¥

Their frequency B
_ a B
Ng = Ny = ¢

corresponds exactly to Bohr’s fundamental assumption.
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Solutions of Schrddinger's Wave Ecuation. Tnat the energy E

rrast have one of the definite values that have been mentioned was
shown by Schrédinger by rcally working out the solution of the weve

ecuation. This equation can be satisfied by a function of the form

f=1Y,F (1),
where Y, is a spherical harrionic of order n, arbitararely chosen,

and F(r) a function of r only, determined by

d8F+_8_ SE _ne) _F_‘__+8113m( . gg) P 0
ars 7T dr T 37T B3 Y T R

A necessary condition appears to be /£:>IL

Some Thecrems on Spherical Harmonics. #mong all the spherical

harmonics of order n one can select a rumber of 2n + 1, in such &
way that any other ¥, can be expressed as a linear homogeneous

function of the selected ones. These may be called the "independ-

ent" sphericel harmonics.

Examples. n 1. Independent spherical harmonics f.i.

X NA 2,

r ? T’ T

n = 3. Independent spherical harmonics f.1i,

8x® ¥° - 28 .
O r3 ’ X
xy ¥z 2x E
T ’ r r? ;

Let d0 be the opening of an infinitely narrow cone and let the in-
tegrations extend to all directions.
With the =xception of YO (which is a constant) any spherical

harmonic has the property ,
fY d0 = 0
n !

Moreover the independent spherical harmonics, for a given n,

can (and will) be chosen in such a way that, if Y and Y' are two

of them d/”
- YQ Y'QM?P =u0

Po—




This condition is satisfied in the above example.

Finally, if Y, aad Y, are any two spherical harmonics of dif-

ferent orders n and n' onc has always

a//§nYn.dO = 0 )

Normal Fuanctions in Schrgdinger's Theory. Give to y all

possible integral values, and, after having chosen /g', give to n ale

values compatible with it. Finally, when n has been chosen, select
for Y, a set of independent spherical haramonics. By this, all the
independent solutions of the wave equation with its boundary concit- f
icns will be found. These solutions f are called the "normal" furcb—;
ions. A norwal solution can bte specified by three numbers (co;pora—Ag
ble to guantum nusbers). The first is AZ the second n and the |

third nuwber s indicates with which one of the 3n + 1 independent

functions Y, one is concerned. A normal function can therefore he
represented by f;ﬂns‘ But it is more convenient to distinguish +nem §
by one single index, writing f, (or fb , £, . . . as the case may
| be), as if they were all put in one row. The suffix a now stands
for /@ns, and the equality of two suffixes a and b will mean that
each of the values 48, n, s contained in a is eqgual to the corree-
ponding one in b.

Theorem., If fa and fb are any two different normal functions 1

y/gafbds = 0

49 is an elemnet of space and the integration is extended c¢ver all

space.

If the number /g and therefore E, has the same value in the
two functioné, tﬂe theorem follows from what hds been said about
the spherical harmonics.

When Ea and Eb are different, the proof is am follows

B e B te

2 |
8rtm /o e’ _ ;
D fg+ =5 (B, +25) £,=0 |
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8 2
81°m e 3
At + T3 (B, + 3 ) £, = 0.

multiply the first equation by f the second by f subtract and

b ? a’
integrate over space. Since
d af dfy
— = — a. - b ! " -
f, Af -1 Af =3 (£, - £ 2 ) + ete

the integral of this expression vanishes. T hus,

(Ea - Eblf f,£,d8 = 0 and ff‘afbds =0

By the introduction of suitably chosen constant coefficients the .aox-

mal functions may be made such that for each of them

ffagds=1..............(125)

Development gﬁ a2 Given Function P (x,v.z) of the Coordinates

in a Beries of Normal Functions Each Multiplied by a Constant Co-

efficient. With certain restrictions that need not be considered
here one can say that any function P(x,y,z) can be represented by an
infinite series of the form

P = Afy + Axfo + 0 . L+ AT+
If the possibility of this expansion is assumed, the coefficients
are easily determined.

Multiply by f,d5 and integrate over all space. On the right-
hand side all terms with the exception of that with fa disapnears,
and on account of (125)

Aa=fPfadS. S G #<12))
This has a definite numberical value when P(x,y,z) is a given funct-
ion (because fa is a known function).
Matrices. In quantum mechanics as it was developed by Heisenberg,

Born and Jordan, the ordiuate x (and similarly v,z, T, ﬁ, i, z and

other quantities occurring in the formulae) is replaced by an enseumble |

of an infinite number of guantities each of which X b is distinguish-

ed by two numbere a and b, analogous to quantim nugbers (or by two

—

i
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sets of numbers, a standing f.i. for ,f,n,s and o for /Z,n',s’ .)
They forxz together what is called a "uzatrix" in waich they are
simply juiteposed, not being connected by any mathematical overation.
The symbol x will scrve to denote the quantity in its ordinary and

original zeaning, and the matrix will be represented by (x). Thac

guantivies Koy OF eventually (x)ab are the "elements" of the matrix.
The clements with ecual suffixes Xgq @re constant nuabers. An
element with different suffixes o consists of c¢wo factors one of

which represents a vibration, containing cos. dMn,pt or sin. Bmagynt.

Let this factor be

$ +
o Zﬂlnabq
b

. .(137)
so that
_ _ auin,,t
Xy = © ab Xy oow e oo (128)

the last factor being a constant.

The factor (127) will zlso bte represented by qab.CBrreSpond—
ing to every element X pthere is another element xp, . It belongs to

the definition of the kind of xnatrices now considered that

nba = - nab e e e e e e e e e e e .(129)
and that the cuantities andjcba , when realare equal to eech
other and that they are conjugate when they have complex values.

This amounts to saying that x, ,and x,, are conjugate complex quantitieq

The freouencies n are subjscted to the rule that, if a,b,c arc any

three suffixes

Doy * Oy, = N s e e e e . W (130)

Eq. (129) and (130) imply that n,, = 0, so that the elements x  are
independent of t. Also that all the frequencies can be expressed in
the form

- {
nab - Ka - K‘b ) . . . I « e . . . . \131)
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where K., XK, etc. are a series of constant quantities. The idea is
that the freguencies N, fre those of the light that is emitted by
the atom, so thet the element Xob (together with Xba) may be consid--

ered as representing sometning like a vibrator having the frequency .

n .
ab

In all matrices replacing quantities that occur in the same
problem they} frecuencies nabhave the same valuss

Mathematical Operations Performed on Matrices. Some of thase

are defined by the following formulae

] =
(u + gk = Ugp * Vap

(u - v)ab = Ygp 7 Vap

(ku)ab = k (u)ab: (x 'a constant factor)
d _ d - :
(& Wap™ a5 Wap = 2ming, (W,

A matrix may be written in a form similar to that of a determinate.

Ki., , with the smallest number of elements

If this were a determinant and if v,., Vias Vo3 and Vézwhere the elc -

ments of a second determinant, their product would be the determinaunt

Upp Vi FUgp Va5 Ugp Vp F Ug Voo

Usy V91 ¥ ¥ap Va3 0 Yz1 Vip * U2z oz
(uv)
The product/of two matrices is defined as a matrix, the elements
of which are deduced from the elements of the given matrices by the
same rule that applies in the case of determinants. It can be expres-

sed by the formula

(uv) ) = :E;(c) uacvob e e e .. (132)

where the sign of summation refers to all values of the suffix c.
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A matrix (1) is a matrix whose elements with ecual suffixes
are all 7, all other elements being O.

The inverse to a matrix (u), represented by (%) or(%),is de -
fined ©by the equation

W @ =1 L (1)

A conseguence of tihne way in which the multiplication has been defined
is that the products (uv) and (vu) are not in general equal. The
comuutative law of multiplication does not hold in this case. I,
in a special case the two products are eoual, the matrices (u) and
(v) are said to be interchangeable. The mathematical operatiom that
have now been mentioned never introduce new frequencies.

Fundaiental Assertion (for the Case of the Hydrogen Atom).

The eguations of motion of the electron are

m g;%'= - egég etc. S G Ry
dt T

The new theory asserts that matrices (x), (y), (=z), (r) can be found

which satisfy the equations of the same form

dg ~r
m 5= - GZ(Eg) , etc. . . . . . . .(135)
at T+
the matrix (r) being defined by
()2 = ()2 + (y)3 + (z)3 C e e e .. (138)

Moreover, that when (leaving aside some conditions of minor import-
ance) these matrices arc subjected to the conditions

 x) - % A
(x =) (x x) = — (1),ete. . . . . . . (137)

their elements are deteriiined in .so far that the frequencies Doy

all become known.

Eq. (137) are the only quantum conditions. The frequencies of the
emitted radiations can in this wey be determined without any further
guantization of motions and without any consideration about quantum

jumps.
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Matrices Deduced from the Normal Functions. Schrodinger has shown

that matrices satisfying the above conditions can really be construct-
ed by meansof his normal functions. The rules for this construction
are as follows.

1. ng, = ‘a - ot~ JPO PR G £:1:)

3. If u is any function of the coordinates, the elemnets of

the matrix (u) are determined by

Ty =y/p uwf £,88 . ... (139)
By Uy is meant the element uab with omission of the constant factor
Ay
i Thus U is the coefficient of fa in the expansioén: of the
function ufb , or the coefficient of fb in the expansion of ufa .
wf = 2> (b) T £ C e e . (100)
e el Yab = Yo e e e e ... (241)

remark. Let u and v be two functions of the coordinates and con-
sider the values which the elements of_the matrix (uv) must have

according to this definition

” —
(uv)ab = U/ouvfafbds e e e e e (242

But, according to (140)

i, - F 05,1,

viy = > ()T,

T

Multiplying and integrating

c/ouvfafbds = :Zi(od) uacvb%}ﬂ £,4d8

The last integral is 1 for d = ¢ and O when d differs from c., Thus

taking into account (141) and (142) §
<uv)ab - :E.(C) Yac Vor
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Or, when the omitted factors are again introduced

(a0) = 2 (0) wg vy
This agrees with (132)

(74

3. The elements of the matrix (x) are determined by

P - h d.f'b a
(%) 4 ..—_Bﬂmiffa =2 98 . ... (143)
or, since
af af A
(22 + Ty ) a8 =/ 2%T0) s = o,

dx
af af
= = h b a .

4rmi

It must now be shon that the matrix (x) thus defined is the same that

is obtained by differentiating (x) with respect to t, i.e.

(8) 5 = 8w ingpx.y N G X7y
Proof: One has the equations
3. 3
Afy + §§§E (Bg + ) £ =0 . . .. . . (145)
8ﬂ8m e2 :
Afb+~¥l—2——(Eb+;—)fb=O.......(146) 1

¥ultiply (145) by xf, and (148) by xf_ , subtract and integrate
over all space. It is found that the difference between the ex-

pressions
x (£, Af, £ Af) oo (147)

and
afy, af

fo 2~ & .. .(148)

consists of three terms, each of which isthe derivative of some
expression with respect to one of the coordinates and therefore
vanishes on integration. The integral of (147) may therefore be

replaced by that of (148) and thg result of the operation is S

af af S m . 0/“ ,
H — .
\y/m(fa dx to dxa) ds = - h° (Ey ~ Ey) xf f,dS . . (149)
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Combining this ~ith the rile cxpresscd in (139) and *vith thc above
value of (iiab onc finds
(XLp = 2min,x .,

which leads to (144) if thc factor o, is again introduced.

Proof that the Matrices Congtructed by Schrodinger Satisfy the

Equation of ¥otion (135) and tiac cuantua Conditions (137).
1. Differentiatc (148) with resvcet to x, multionly by fa anc.
subtract tae resulting ecuation froa co. (145) aftcr having ~ultipli-

af
ed the latter oy ~a§ .

af af 3. : af
b b 8rma /o .
—ax D fa - by .3 (ba - By Iy a:n
a <%
h 3 T 3 av

Now integrete over all spsce, The first two terus vanisin and one

finds, taking into account (143) and the rule erprossed in (139)

E. - F -
o d a b - ?) _—
gmal = (&) gy, = - e (T3)ap

Hence .
a(x) ]
omin.a( 3t ) = — e2(%s
apdl at L= - e*(T5)

or 2
a” (x) 3/%
i = - e°(T7) g
2 o +3)ab

in which (135) ie proved.

Note that tue proof could heve been given just as well if in
(134) and (135) thnere .ad been %g instead of egﬁg and in (145) =nd
(148) - U instesd of = , i

2. Accor ding to (143)

Ml o = i .
h (R)ap = ho *ab
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is the coefiicicnt of fy in tic erpansion of EER . Thus

&= ~an o le b « <« . .. (180)
Sinilarly, according to (139)
>cd
xf, = :E (Q)—— 1 N ¢ -3

¥ultirly (150) and (}51) and integrate. as

“ab  “cg ! ] b o
S @52 mr) somes .. (152)
(=3 .

In the second factor on the left hand side the suffixes may he ﬁ
interchanged (follows froa (139))and the same may be done in the .
first factor if the sign is inverted at the samne tiae (follows from
(144)). 1If finally, after having made these two changes, one inter-

changes b &nG ¢, -one obtains

Xq x af
- ab ca _ h C aa
- E (a) 5.0 * o = 3nm%ﬁ/ﬂbe 3= as . . (183)

Now add (153) and (153). O ne right nand side

nt
/’ a(fpts) &
. T as = —d/ fbfcds

On the left nand side, reuewbering that T

]

dzb Sca = 9cp

and that, in virtue of .~ . (/32)

:EE (2) Xop Xop = (xx)ob

one obtains
1

d .
-— aper ‘e
( alan }\..‘L) wociane

cb qu

Thus ) . hagy
weep L wmwr = ez 3
( ad. ‘L}x)c b = i fbe&S .

This saows that the elements of the matrix
(3x - xx)
are zero when the two suffixes are different =nd that they have

the value h
!

STl
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when the suffizce are equal, encctly whet is expressed by (137).
The "Energy" in cuantum Dynamics. Like 1l other cuantities
the energy - 3
E = % m [23 4§34 28 ] - -
is replaced by & wmatrix
() = 2%+ 1P+ (2] - (&)
The cuestion now is to find its elemeuts Zgp - In order to nave in
3
tiie first plasce the elements of (%—) multiply (145) by fy and inte-
grate, This gives ’
118 /n
= —- E f 2fpdS - =% [ fp Ofas . L . . (154)
-ab( )b e/ p 8nom o/ ° &
For the 1a8t integral one can'ﬁrlte
af_ df af, af atf, daf
—_— b 4 b 4 a b 3
‘/‘EdA = dy Tt @ dz)do (155)
Now using (150)
df, _ ommi Z (C)"ca F o= - ammi (C)Xac £
dx h Uogq © B Goc ©
ifb _ Bngi‘Z:(a) db £y )
ax qdb sl
Multiply and integrate, using (r32)
/o df, dfy - 4ﬂ8m2 < iac ﬁcb 4nln® (.3
& s g L = (%2) 4 |
- - h %ac %cb hgqﬁb 2 |

b = a, since Uop = 1,

There are similar forwmulae for the other parts of (155). Finally
(154) becoues
(E) o = gy, E fde

Thus the elements of (E) with dlffere“t suffixes are 0, and for

(E) gp = Eq

The elements of (E ) are therefore the energy values E; , By, &tlc,

that occur in Schrodinger!s theory.
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Mathematical Operations in the Dynamics of Mstrices, Independ-

ent of Schrodinger's Normel Functions. Btartingfrom the equa-

tions of motion
.e X e
m(¥) = - &3 (;3) , om (¥) = - &3 (§§) , etc(156)

one can prove theorems. siailar to those of ordinary dynamics.

1. In the first place
o e ae - 2 o g.._ .L M \
al{zx+%x)+ eto.} = - e° (% 5+t 73 %+ elg.

Using relation like (137) one can deduce from this

a(E) _ 0,

at
the energy eguation.

2. Multiply the second of the eouations (158) by z and the

third by y and subtract. This gives

-

m(yz —2¥) =0. . . . . ... .. (187

But

.o

G (58 - 2) = (3% + y% - &7 - 2¥) = (y% - zY)

since y and z are found to be interchangeadle. By this (157) becomes
%{ { an(yz - z&)} =0
n(yz - zy) = const. say = P,

Similarly

m(z% - xy) = P, n(xy - yx) = P,

o
These matrices represent the components of the moment of moientum.

Papli has shown tiiat the elements of the matrix (Pg) are of the

form

iy
k(k + 1) 9-5
417

Tae Zad, |




