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Abstract. One of the basic postulates of fundamental physics that is ingrained in our thinking is 
that the photon is an elementary particle that can be represented as a mathematical point, with 
spin-1, but without radial extension. According to General Relativity, gravity influences the 
motion of light, not by acting on light itself, but by directly acting on a dynamic four-
dimensional space-time continuum through which the point-like photon passively propagates. 
Here I present an alternative explanation of the effect of gravity on light based on the rotational 
as well as translational motions of the photon. By taking the mechanics out of the description of 
space-time, and putting it back into the quantum mechanics of light, I show that the deflection of 
starlight, the experimentum crucis in favor of General Relativity over Newtonian mechanics, can 
be explained using Newton’s Law of Gravitation, Euclidean space and Newtonian time. This 
treatment has the advantage over General Relativity in encompassing the dynamical properties of 
photons that were neither known to Newton nor employed by Einstein. This interpretation, which 
is also applicable to the understanding of gravitational lensing, the Global Positioning System, 
the gravitational red shift, and black holes, may lead to a deep or “ultimate” understanding of the 
nature of reality. 

 
Using Newton’s Law of Gravitation and treating light as a heavy body, Soldner [1] 

calculated that the deflection of starlight by the sun would amount to 0.84 arcseconds.  After 
completing the General Theory of Relativity, Einstein [2] predicted that the magnitude of the 
deflection of starlight by the sun would be twice as great or 1.75 arcseconds (Figure 1). While 
Soldner considered gravity to act dynamically on light propagating through Euclidean space and 
Newtonian time, Einstein considered matter to warp a dynamic space-time continuum so that the 
apparent force of gravity was actually a result of the action of matter on the geometry of space-
time through which the point-like photons submissively propagated. 

                            
 
Figure 1. The deflection of starlight. The solid line extending from the actual position of the star 
to the telescope is described by the equation of motion of the trajectory of starlight which gives 
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the dependence of r upon θ. The predicted trajectory, evaluated from 0 to π radians, is given by 
equation 22. 
 

Realizing that he could use the deflection of starlight by the sun to test the veracity of the 
General Theory of Relativity, Eddington organized an expedition to test the General Theory by 
observing the position of stars during a total solar eclipse. In such a test, the positions of the stars 
in the field near the sun that are visible during a solar eclipse are compared with the positions of 
the same stars observed when the sun’s gravity no longer influences the starlight traveling from 
the stars to the earth. Caeteris paribus, the difference in the positions of the stars is attributable 
to the gravitational deflection of starlight.  

 
On 29 May 1919, British expeditions observed the deflection of starlight during a solar 

eclipse [3]. The magnitude of the deflection was consistent with General Relativity, and since 
then, the gravitational bending of light by the sun has been considered to be one of the crucial 
observations in support of the assumption that the space-time continuum is dynamic and warped 
by matter. By taking into consideration dynamical properties of light unknown to Newton and 
not employed by Einstein, I can explain the observed “double deflection” of starlight without 
invoking a four-dimensional space-time continuum that is warped by the presence of matter. 

 
The Dynamical Properties of Photons 

Photons are dynamic entities that carry linear momentum. The magnitude of the linear 
momentum depends on the wavelength or frequency of the photon and is given by ℎ

𝜆
 or ℎ𝜈

𝑐
. In 

addition, photons carry angular momentum, which was originally called the moment of 
momentum—emphasizing the importance of a radial extension. The spin angular momentum for 
each and every photon is equal to ℎ

2𝜋
—often denoted as spin-1. The value of the spin angular 

momentum is a property shared by all photons, independent of their frequency and wavelength.  
 
Nicholson [4] introduced the importance of angular momentum in understanding the 

spectrum of atoms. He interpreted Planck’s constant to be a “natural unit of angular 
momentum,”  indicating that “the angular momentum of an atom can only rise or fall by discrete 
amounts when electrons leave or return.” Sommerfeld [5] also insisted on the importance of 
angular momentum when he wrote, “…in the process of emission…, we demanded…the 
conservation of energy. The energy that is made available by the atom should be entirely 
accounted for in the energy of radiation ν, which is, according to the quantum theory of the 
oscillator, equal to hν. With the same right, we now demand the conservation of momentum and 
of moment of momentum: if in a change of configuration of the atom, its momentum or moment 
of momentum alters, then these quantities are to be reproduced entirely and unweakened in the 
momentum and moment of momentum of the radiation.”   

 
The spin angular momentum of photons is basic for understanding the selection rules that 

describe atomic spectra. Angular momentum is one of the fundamental concepts of physics, and 
if indeed, a photon has extension in the radial direction, as suggested by Lorentz [6] and Millikan 
[7], in order to explain interference phenomena; and Wayne [8,9], in order to explain the 
observed arrow of time and why charged particles cannot exceed the speed of light, then spin 
angular momentum will represent rotational motion of or within the photon—not just a number.  
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I propose that the existence of the spin angular momentum of a photon is an indication of the 

potential, for a general theory of optical phenomena, to consider the rotational motion of a 
photon in addition to its translational motion. This opportunity is analogous to the one seized by 
Clausius [10], who provided an explanation of the observed values of specific heats by treating 
molecules as having both translational and rotational motions. The inclusion of rotational motion 
brought the predictions of the mechanical theory of heat closer to the observed values. Maxwell 
[11] further utilized the concept of the equipartition of energy when he asserted that in ideal 
gases, the energy of rotation was equal to the energy of translation, and Boltzmann [12] 
generalized the equipartition theorem to say that the average energy of all systems was equally 
divided among all the independent components of motion, including the potential and kinetic 
energies of oscillators.  

 
The total energy (hν) of a photon can be transferred to or from an atom when the photon is 

destroyed or created upon absorption or emission, respectively. In optical processes that do not 
depend on absorption, it is possible that only parts of the total energy may be relevant in 
describing and explaining the phenomenon. I consider the photon in free space to be an adiabatic 
thermodynamic system composed of a longitudinal oscillator, containing potential and kinetic 
energy and a rotational oscillator, containing potential and kinetic energy [13]. The two 
orthogonal oscillators are in thermal equilibrium and, by extension of the equipartition theory; 
the total energy of the photon is equally distributed among the four degrees of freedom (Figure 
2).  

                 
Figure 2. A model of the photon described in terms of the equipartition of energy. 
According to the model [13], a photon is composed of two complementary particles that 
form a harmonic oscillator that vibrates in the longitudinal direction, parallel to the 
propagation vector as it rotates orthogonally to the propagation vector. Absorption consists 
of the transfer of its total energy (hν) to the absorber, while emission consists of the 
transfer of energy (hν) from the emitter to the photon. The energy integral that describes 
the trajectory of a photon in a gravitational field makes use of the kinetic portion of the 
translational energy to describe the kinetic energy of the photon. By contrast, the 
gravitational energy of the photon used in the energy integral results from the interaction 
of the gravitational field of the sun with the total energy of the photon [15].    

 
My approach to formulate an equation of motion for a photon moving through a gravitational 

field is analogous to the approach used to formulate an equation of motion that explains the 
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trajectory of an artillery shell by taking the rotational as well as the translational motion of the 
projectile into consideration. The ratio of rotational motion to translational motion of projectiles 
is not constrained by the equipartition theory. Consequently, the goal of ballistic research is to 
find the rifling twist that is just sufficient to provide the rotational motion necessary to stabilize 
the projectile while minimizing the loss of translational kinetic energy. By contrast, I assume in 
developing the equation of motion that describes the trajectory of a photon through a 
gravitational field, that the equipartition theorem is applicable to photons and that the rotational 
kinetic energy of a photon is equal to its translational kinetic energy.  

 
By using the equipartition theorem and taking the assumed rotational as well as the 

translational properties of the photon propagating through Euclidean space and Newtonian time 
into consideration when deriving the equation of motion, I will show that the observed 
magnitude of the gravitational deflection of starlight can be explained without invoking the 
General Theory of Relativity that posits that matter induces a curvature of a dynamical four-
dimensional space-time continuum. The ability to explain the observed “double deflection” of 
starlight lends support to the validity of the complex, dynamical model of the photon, and its 
movement through Euclidean space and Newtonian time.   

 
Using Dynamical Photons to Analyze the Deflection of Starlight 

 

In Einstein’s theory of light, the mechanical properties of the quantum of light, including 
energy and momentum, were described with elegant simplicity by point-like properties of hν and 
hν/c, respectively. However the lack of any predicted internal structure of the photon limits one’s 
ability to visualize optical processes in mechanical terms and this may have had the unintended 
consequence of obscuring many of the unsolved mysteries inherent in the wave-particle duality. 
While, it has been productive at first to treat atoms and the elementary particles that comprise 
them as ideal, point-like particles propelled by forces through empty space much like the earth is 
propelled around the sun, I consider the possibility that the photon may not be an elementary 
particle [13]. A composite photon has been proposed by Bragg, de Broglie, Born, Jordan and 
others [see 13,14]. I extend their proposals by considering the photon to have internal motions 
and that its total energy is equipartitioned between each degree of freedom (Figure 2).  

The total energy (E) of a photon, which includes both translational energy and rotational 
energy, is given by the following equation: 

     𝐸 = ℎ𝜈       (2) 

where hν is equal to the amount of energy required to create or destroy a photon during the 
emission and absorption process, respectively. The linear momentum of a photon is given by hν

𝑐
. 

The relationship between the total energy and total linear momentum (p) of a photon, as 
measured in processes in which the photon is absorbed, is: 

     𝑝 =  𝐸
𝑐
         (3) 

When we define the momentum of a photon as a dynamical quantity given by the product of 
its apparent mass (m) and its velocity (c), we get: 
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     p = mc       (4) 

By equating equation 3 and equation 4, we get the well-known relationship between mass 
and energy: 

     E = mc2      (5) 

Solving for the apparent mass (m) or a photon, we get: 

     m = 𝑝
𝑐
 = hν

𝑐2
      (6) 

When starlight, composed of photons, passes near a massive body, it will be subjected to the 
gravitational binding energy of that body. I assume that the gravitational energy acts on the total 
mass-energy of the photon (Figure 3). This assumption is supported by the agreement between 
theory and observation in my analysis of the gravitational red shift [15]. The gravitational energy 
will cause a solid particle to be deflected in the radial direction toward the massive body instead 
of continuing in the tangential direction. If the translational kinetic energy of the photon is 
greater than the gravitational energy, the photon will follow a hyperbolic path around the 
massive body. Consequently, the position of the star will appear to an observer to be displaced 
from its actual position (Figure 1). The displacement will depend in part on the relationship 
between the translational kinetic energy of the photon and the gravitational energy. The 
gravitational energy between a large gravitational mass (M) and a photon with apparent mass (m) 
separated by a center-to-center distance (r) is given by: 

    𝐸𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =  −𝐺𝑀𝑚
𝑟

     (7) 

where G is the gravitational constant. 

                           

Figure 3. A model of the photon described in terms of equipartition of mass-energy using 
the mass-energy relation, 𝒎 = 𝑬

𝒄𝟐
, and applying the equipartition theorem. According to the 

model, the orbital angular momentum results from the translational mass and the spin 
angular momentum results from the rotational mass.   
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Energy is conserved as the photon propagates through Euclidean space and Newtonian time 
in its trajectory past a massive body. The constant of motion (𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙) that takes into 
consideration the translational kinetic energy (1

4
𝑚𝑣2) of the photon and the gravitational binding 

energy (−𝐺𝑀𝑚
𝑟

) between the massive body and the photon is given by: 

    𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙  =  1
4
𝑚𝑣2 −  𝐺𝑀𝑚

𝑟
     (8) 

Using polar coordinates and decomposing the translational kinetic energy into the radial (r) 
and tangential (θ) components, we get: 

    𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙  =  1
4
𝑚 �𝑑𝑟

𝑑𝑡
�
2

+  1
4
𝑚𝑟2 �𝑑𝜃

𝑑𝑡
�
2
−  𝐺𝑀𝑚

𝑟
  (9) 

As the photon passes a massive body, orbital angular momentum is also conserved. The 
orbital angular momentum of a photon following a hyperbolic trajectory as it approaches the sun 
is given in terms of its apparent mass, its velocity and the impact parameter. The two constants 
of motion, which are based on conservation of energy and conservation of angular momentum, 
act as adjustable parameters, which along with the initial conditions, 𝑟𝑜 and 𝜃𝑜, yield a complete 
solution to the photon’s trajectory in terms of the two degrees of freedom, r and θ. In the case for 
photons grazing the limb of the sun, the impact parameter, which is equivalent to the moment of 
inertia, is given by the radius of the sun, R.  

I assume that only the translational mass, which is half of the total mass, contributes to the 
orbital angular momentum when a photon propagates in a trajectory around the sun (Figure 3). 
The rotational motion of the photon, although present and ubiquitous, is a spinning motion and 
does not contribute to its orbital angular momentum. Since 𝑣 = �𝑑𝜃

𝑑𝑡
� 𝑟, the constant of motion 

(𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙) based on the conservation of angular momentum, can be written like so: 

    𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = 1
2
𝑚𝑣𝑟 = 𝑚𝑟2

2
�𝑑𝜃
𝑑𝑡
�     (10) 

After rearranging equation 10, we get: 

    𝑑𝜃
𝑑𝑡

=  2𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙  
𝑚𝑟2

        (11) 

where 𝑚𝑟2

2
 is the moment of inertia. After substituting equation 11 into equation 9, and cancelling 

like terms, equation 9 can be rewritten as: 

    𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙  =  1
4
𝑚 �𝑑𝑟

𝑑𝑡
�
2

+  �𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙
2

𝑚𝑟2
� −  𝐺𝑀𝑚

𝑟
   (12) 

Solving for 𝑑𝑟
𝑑𝑡

, we get: 

    𝑑𝑟
𝑑𝑡

= ∓�4𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙 
𝑚

−  �4𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙
2

𝑚2𝑟2
�+  4𝐺𝑀

𝑟
    (13) 
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We can use the chain rule to combine equations 11 and 13. This yields an equation for the 
shape of the trajectory in terms of the change in the polar angle with respect to the change in the 
radial distance: 

    𝑑𝜃
𝑑𝑟

= 𝑑𝜃
𝑑𝑡

𝑑𝑡
𝑑𝑟

 = ∓ 2𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 

𝑚𝑟2�
4𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙 

𝑚  − �
4𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙

2

𝑚2𝑟2
� + 4𝐺𝑀𝑟  

   (14) 

In order to integrate equation 14, we separate the variables and simplify: 

    ∫𝑑𝜃 = ∓∫
�
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 

𝑟 �
2
� 1
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙  �

��𝑚𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙  − �
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 

𝑟 �
2

 +  𝐺𝑀𝑚2
𝑟 �

𝑑𝑟  (15) 

We can conveniently integrate equation 15 after substituting u = 𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙  
𝑟

, and simplifying: 

    𝜃(𝑟) − 𝜃𝑜 =  ±∫ 𝑑𝑢

��− 𝑢2+ 𝐺𝑀𝑚2
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑢 + 𝑚𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙 �

   (16) 

where 𝜃𝑜 is the constant of integration. This integral can be solved using a Table of Integrals: 

     ±∫ 𝑑𝑢
�[− 𝑎𝑢2+ 𝑏𝑢+𝑐]

= ± 1
√−𝑎

sin−1 � 2𝑎𝑢+𝑏
√𝑏2−4𝑎𝑐

�   (17) 

where a = -1, b = 𝐺𝑀𝑚2

𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 
 and c = 𝑚𝐸, and we take the negative solution to yield the concave 

portion of the hyperbola relative to the origin and evaluated from 0 to π as shown in Figure 1. 
After substituting the values for a, b, and c into equation 17, we get:  

   𝜃(𝑟) = 𝜃𝑜 − sin−1

⎣
⎢
⎢
⎢
⎡ −

𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 
𝑟   +  𝐺𝑀𝑚2

𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 

�� 𝐺𝑀𝑚2
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 �

2
+ 4𝑚𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙⎦

⎥
⎥
⎥
⎤
     (18) 

After taking the sine of both sides, we get: 

    sin(𝜃) = sin(𝜃𝑜) − 
−
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙    

𝑟  +  𝐺𝑀𝑚2

𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 

�� 𝐺𝑀𝑚2
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙  �

2
+ 4𝑚𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙

    (19) 

Because sin(0) = 0, by  setting 𝜃𝑜 =  0, we get: 

    sin𝜃 = 
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙  

𝑟   −  𝐺𝑀𝑚2

𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙  

�� 𝐺𝑀𝑚2
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 �

2
+ 4𝑚𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙

     (20) 

After rearranging, we get: 
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    𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 
𝑟

 = 𝐺𝑀𝑚
2

𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 
+ �� 𝐺𝑀𝑚2

𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 
�
2

+  4𝑚𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙 sin𝜃  (21) 

Next we rewrite equation 21 in order to get r as a function of θ: 

    𝑟 =  
𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙

2

𝐺𝑀𝑚2

1  +�1+ 
4𝑚𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙

2𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙
𝐺2𝑀2𝑚4 sin𝜃 

    (22) 

Equation 22 has the form of an equation for a conic section where one focus is at the origin. 
The utility of the equation for a conic section comes from its ability to transform the 
characterization of the deflection of starlight from the polar coordinate system where the sun is at 
the center to a coordinate system of the observer where the sun is at the focus.  When the energy 
integral,  𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙 > 0, and the eccentricity, 𝜀  > 1, the equation describes a hyperbola in polar 
coordinates where: 

    𝑟 =  𝛼
1 + 𝜀 sin𝜃 

       (23) 

where 𝛼 is the semi-latus rectum, which is equal to 𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙
2

𝐺𝑀𝑚2 . In the initial condition, when 
𝜃 = 𝜃𝑜 = 0, 𝑟 =  𝑟𝑜 = ∞. By comparing equation 22 with equation 23, we see that eccentricity 
(𝜀) is given by: 

    𝜀 = �1 + 4𝑚𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙2𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙
𝐺2𝑀2𝑚4      (24) 

𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙 and  𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 are constants of integration. By letting 𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = 1
2
𝑚𝑣𝑟 =  𝑚𝑐𝑅

2
, where 

𝑣 = c, the speed of light, and r = R, the radius of the sun, we get: 

   𝜀 = �1 + 4𝑚𝑚2𝑐2𝑅2𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙
4𝐺2𝑀2𝑚4  = �1 +  𝑐

2𝑅2𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙
𝐺2𝑀2𝑚

   (25)  

By letting 𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙 =  1
4
𝑚𝑣2 −  𝐺𝑀𝑚

𝑟
=  1

4
𝑚𝑐2 −  𝐺𝑀𝑚

𝑅
, where 𝑣 = c, and r = R, we get:  

   𝜀 = �1 + 𝑐
2𝑅2𝑚𝑐2

4𝐺2𝑀2𝑚
− 𝑐2𝑅2𝐺𝑀𝑚

𝐺2𝑀2𝑚𝑅
  = �1 +  𝑐4𝑅2

4𝐺2𝑀2 −
𝑐2𝑅
𝐺𝑀

  (26)  

where 𝑐4𝑅2

4𝐺2𝑀2 = 5.5454936 x 1010 and 𝑐
2𝑅
𝐺𝑀

= 4.709774353 x 105. Since 𝑐4𝑅2

4𝐺2𝑀2 ≫
𝑐2𝑅
𝐺𝑀

 and 
𝑐4𝑅2

4𝐺2𝑀2 ≫ 1, 

   𝜀 ≅ � 𝑐
4𝑅2

4𝐺2𝑀2 ≅
𝑐2𝑅
2𝐺𝑀

       (27) 

After taking the reciprocal of 𝜀, we get: 

   1
𝜀
 ≅ 2𝐺𝑀

𝑐2𝑅
 ≅ 4.246487942 x 10-6     (28) 
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The final formula is independent of the mass of the photon, indicating that the gravitational 
deflection of starlight should not be a source of chromatic aberration. From the properties of a 
conic section, we can obtain β: 

   β =  cos−1  �1
𝜀
� ≅ 89.99975669°     (29) 

Given that one degree equals 3600 arcseconds, we can obtain the predicted angle of 
deflection (δ) from β given in equation 29 and from the relations shown in Figure 1: 

   δ ≅  180° - 2β ≅ 4.86612 x 10-4° ≅ 1.75 arcseconds  (30) 

which is the same as the value of the “double deflection” predicted by Einstein’s General Theory 
of Relativity and observed by astronomers. The generalized energy and angular momentum 
integrals, for a generalized photon propagating through the gravitational field of the sun, are 
given by the following equations:: 

   𝐸𝑜𝑟𝑏𝑖𝑡𝑎𝑙  =  1
2𝑁
𝑚𝑣2 −  𝐺𝑀𝑚

𝑟
      (31) 

   𝐿𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = 1
𝑁
𝑚𝑣𝑟 = 𝑚

𝑁
�𝑑𝜃
𝑑𝑡
� 𝑟2      (32) 

where N characterizes the assumptions used to equipartition the mass-energy of the photon. N = 
1 for a simple corpuscular photon with translational motion only, and N = 2 for a complex 
photon with translational and rotational motion. Using this derivation, the predicted deflection 
for a Newtonian corpuscle that lacks rotational motion is calculated to be equal to one-half the 
deflection calculated for a photon whose mass-energy is equipartitioned between its translational 
and rotational oscillating components [15]. While my analysis leaves us ignorant of the physical 
mechanism by which the gravitational force acts between the sun and the photon, any putative 
physical mechanism is no less mysterious than the physical mechanism that must be imagined to 
explain how matter can warp a dynamic four-dimensional space-time continuum. 

Conclusion 

The “double deflection” observed by the astronomers on the eclipse expeditions can be 
explained equally well by assuming that that photon is point-like and propagates through a 
dynamic four-dimensional space-time continuum that is warped by matter as posited by the 
General Theory of Relativity, or by assuming Newtonian gravitation, that space is Euclidean, 
time is Newtonian, and the photon has a complex dynamical structure with both translational and 
rotational motions. The latter explanation has the advantage of encompassing the dynamical 
properties of photons, including their characteristic angular momentum, which were neither 
known to Newton nor employed by Einstein.  By taking the mechanics out of space-time and 
putting it back into the spin-1 photon, gravitational lensing, the Global Positioning System, the 
gravitational red shift, and black holes become understandable without invoking a warped, four-
dimensional space-time continuum [15]. This treatment, which gives a deep and elegant 
understanding of the nature of reality, also makes the gravitational deflection of starlight 
understandable to the “common folk” and the “man in the street,” without feeling like one has 
been “wandering with Alice in Wonderland and had tea with the Mad Hatter” [16-26].  
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