
The African Review of Physics (2019) 14: 0006 
 

30 
 

The Kirchhoff Diffraction Equation based on the Electromagnetic Properties of the Binary 
Photon 

Randy Wayne 
Laboratory of Natural Philosophy, Plant Biology Section, School of Integrative Plant Science, 

Cornell University, Ithaca, NY USA 
 
Kirchhoff’s diffraction equation, which has been used for over a century to design optical instruments, exactly describes observed 
optical phenomena. This is a curious fact given that the derivation of Kirchhoff’s equation from the Helmholtz equation requires 
that the Dirichlet and Neumann boundary conditions are satisfied for an arbitrary surface simultaneously in ordinary space. 
According to Sommerfeld and Poincaré, this should be impossible if light is an electromagnetic wave as described by Maxwell 
where the magnetic and electrical fields are in phase. Given Maxwell’s theory of light as an electromagnetic wave, the Dirichlet 
and Neumann boundary conditions could be satisfied only if light vanished identically in the image space, which is clearly contrary 
to experience. By contrast, the Dirichlet and Neumann boundary conditions are satisfied simultaneously by the binary photon, 
which is composed of electrical and magnetic fields that are out-of-phase by a quarter of a wavelength. Consequently, one field 
satisfies the Dirichlet boundary condition while the other field simultaneously and in ordinary space satisfies the Neumann 
boundary condition. A complex plane wave where the magnetic and electrical fields are a quadrature out-of-phase is also a solution 
to the standard and a relativistic form of Maxwell’s wave equation. 
To derive the scalar Kirchhoff diffraction integral from the binary photon, I have developed two functions 𝑈 and 𝐺 that are based 
on the magnetic and electrical properties of light, respectively. The two functions are twice differentiable. I have obtained their 

normal derivatives  and  with the aid of Faraday’s law and the Ampere-Maxwell law, respectively. In this way, 𝑈  describes 

the magnetic component of the binary photon as it propagates from the source to the diffraction plane and 𝐺  describes the 

electrical component. Together 𝑈  and 𝐺 , which are a quadrature out-of-phase with each other, simultaneously satisfy the 

Dirichlet and Neumann boundary conditions for an arbitrary surface in ordinary space, without light vanishing identically in the 

image plane. 𝑈  and 𝐺  are both continuous across the opening of an aperture and both vanish at an opaque boundary. As a 

result of the properties of the binary photon, the boundary conditions that form the basis of the Kirchhoff diffraction equation and 
the approximations that describe Fresnel and Fraunhofer diffraction do not lead to complete darkness at the image plane but to the 
observed diffraction patterns in ordinary space. The binary photon is also useful in understanding three-dimensional diffraction 
patterns and the observed difference between lateral and axial resolution. 

 
1. Introduction 

George Green [1] developed a theorem that related the 
electrical potential on an arbitrary surface to the charge 
density within the surface. The theorem required a 
function (𝑈), with physical properties that represented 
the sum of all of the electric charges acting on a given 
point divided by the distances (𝑟) between the charges 
and the arbitrary point. The theorem also required a 

second function (𝐺 = ; where 𝑟 is the radial 

distance), known as Green’s function, that was 
exclusively geometrical. Green’s theorem (Eqn. 1), 
which relates a surface (𝑆) to a volume (𝑉), requires 
that the two functions (𝑈 and 𝐺) and their normal 

derivatives (  and ) are differentiable.   

 

∭(𝑈∇ 𝐺 − 𝐺∇ 𝑈) 𝑑𝑉 = ∬ 𝑈 − 𝐺 𝑑𝑆     (1) 

 
     Green’s theorem is a powerful mathematical 
method that relates the properties of point sources to 
the properties of a point on an arbitrary but convenient 
surrounding surface. Because Green’s theorem was 
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not published in the elite scientific journals, its power 
remained hidden during Green’s lifetime. 
     Green’s work was discovered by William 
Thomson, who subsequently shared Green’s work 
with George Gabriel Stokes [2] and James Clerk 
Maxwell [3]. Thomson also republished Green’s work 
in Crelle’s Journal in 1850, 1852 and 1854 - years after 
Green’s death in 1841 [4-7]. Kelvin also shared 
Green’s work with Hermann Helmholtz [8], who used 
Green’s theorem to model the tones emitted by organ 
pipes. Because Helmholtz was modeling waves rather 

than potentials, his second function (𝐺 =
𝒌∙𝒓

− ; 

where 𝒌 is the wave vector and its magnitude 𝑘 
represents the wave number) was periodic and 
vanished at 𝑟 = 0. Gustav Kirchhoff [9, 10] applied 
Helmholtz’s work to the phenomenon of optical 
diffraction in order to find a diffraction integral that 
represented the exact sum of all point sources of light 
on a given point in a diffraction pattern on the other 
side of the aperture, given the distances between each 
point source and the point in the diffraction pattern. 
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Kirchhoff’s diffraction integral, which describes the 
relation between the object and the image, is the 
standard equation used for instrument design and 
image analysis [11-22].  
     The use of Green’s theorem demands that the two 
functions are continuous across an arbitrary surface. 
Poincaré [23] and Sommerfeld [24, 25] realized that 
Kirchhoff’s diffraction integral although exact, lacked 
rigor in that, if light were composed of 
electromagnetic waves, where the electric and 
magnetic fields were in-phase, as postulated by 
Maxwell [26], then light would vanish identically on 
the other side of an arbitrary surface in which its value 
(Dirichlet boundary condition) and its normal 
derivative (Neumann boundary condition)  
simultaneously vanished [27].  Since Maxwell’s 
treatment of electromagnetic waves was considered 
infallible, this presented a conundrum given that all 
light does not vanish at an aperture. Sommerfeld [24, 
25] and his student Carslaw [28] used a mathematical 
trick to overcome the problem of the contradictory 
boundary conditions for a sinusoidal electromagnetic 
wave, and made the solution mathematically rigorous 
using the method of images and a Riemann double-
space where they postulated that every point source in 
physical space was accompanied by a mirror image of 
the point source in imaginary space. While the sleight-
of-hand treatment is mathematically rigorous, and the 
Dirichlet and Neumann boundary conditions are met 
simultaneously by the waves from the real and 
imaginary point sources, the physical assumptions of 
imaginary space are fanciful. Hans Bethe [29], another 
student of Sommerfeld’s, satisfied the boundary 
conditions by postulating the existence of a magnetic 
monopole that circulates around the aperture as if it 
caused a magnetic dipole. Again, while this solution is 
mathematically rigorous, it has no physical meaning 
unless magnetic monopoles exist at the aperture. More 
recently, Miller [30] solved the problem by treating a 
spherical point sources as a dipolar source. All these 
solutions have one thing in common—they bring 
twoness to the solution.  
     The binary photon, which has been valuable in 
describing why charged particles cannot exceed the 
speed of light and in describing the deflection of 
starlight in terms of Euclidean space and Newtonian 
time [31-33] provides a natural solution to the problem 
of twoness necessary to unify electromagnetic theory 
with diffraction theory in a mathematically rigorous 
and physically meaningful manner. In the binary 
photon, the amplitudes of the electric and magnetic 
fields are orthogonal and a quadrature out-of-phase 

[33]. Here I propose that 𝑈
𝒏
 represents the magnetic 

property of light given by a cosine function and 𝐺
𝒏
 

represents the electric property of light given by a sine 

function so that 𝑈
𝒏
 and 𝐺

𝒏
 satisfy the Dirichlet and 

Neumann boundary conditions at any arbitrary surface 
simultaneously. Thus by assuming that the binary 
photon is composed of equal and opposite charges, and 
consequently, the total energy is composed of 
magnetic and electrical components that are out-of-
phase by a quadrature, the real observed phenomena 
can be described exactly and explained physically 
while the Dirichlet and Neumann boundary conditions 
are rigorously met. 

Here I will present a) the derivation of the 
Kirchhoff diffraction integral based on the binary 
photon; b) the Fresnel and Fraunhofer approximations 
for a two-dimensional diffraction pattern; c) the three-
dimensional diffraction pattern based on the binary 
photon; and d) the complex plane wave solution to the 
second-order wave equation.  
 

2. The Kirchhoff diffraction integral 
 

The boundary conditions for Kirchhoff’s diffraction 
equation demand that both the value (Dirichlet 
boundary condition) of an electromagnetic wave and 
its normal derivative (Neumann boundary condition) 
are continuous simultaneously at any surface in 
ordinary space as light propagates from a point (𝑃 ) in 
one volume (𝑉 ) to a point (𝑃 ) in another volume (𝑉 ) 
though a point (𝑃 ) shared by the surfaces (𝑆 ∩ 𝑆 ) 
that border both volumes (Fig. 1). The two volumes 
are separated by an opaque surface with an aperture of 
arbitrary shape that defines the shared surface. 
Kirchhoff’s diffraction integral sums all the 
continuous optical paths originating at 𝑃  and arriving 
at 𝑃  through the shared surface while taking the phase 
of each path into consideration. I will describe each 
optical path of the binary photons propagating from 
the source to the image point using the twice-
differentiable scalar functions U and G, and their 
normal derivatives, which are also differentiable. The 
twice differentiability satisfies the second-order wave 
equation. The condition for continuity between two 
volumes (𝑉  and 𝑉 ) that share a surface requires that 
for some function X, 𝑋 = 𝑋  and for another function 

Y, = . The intensity of the light that propagates 

from 𝑃  to 𝑃  in the diffraction plane is obtained by 
multiplying the Kirchhoff diffraction integral by its 
complex conjugate.  
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Fig. 1: The propagation of light from 𝑃  to 𝑃  by way of a 
point 𝑃  in the opening of the aperture, where the arbitrary 
surfaces 𝑆  and 𝑆  intersect. The normals are outward with 
respect to 𝑉  and inward with respect to 𝑉 . 𝑆  is a spherical 
surface that surrounds the source point of light and 𝑆  is the 
spherical surface that surrounds the image point in the 
diffraction plane. In the hole in the aperture, 𝑋 = 𝑋  and 

=  and in the opaque regions of the aperture, 𝑋 =

𝑋 = 0 and = = 0. 

 
     With respect to Green [1], the magnetic and electric 
properties of light will be treated in terms of their 
magnetic and electric potentials (in V)1. The magnetic 

potential  is obtained by multiplying the magnetic 

flux density vector (B in Vs/m2) by the radius of the 

binary photon radius = =  in m  and the speed 

of light (𝑐). Likewise, the electric potential  is 

obtained by multiplying the electric field (E, in V/m) 
by the radius of the binary photon and the imaginary 
number 𝑖 = √−1, which indicates that the electric 
potential at a point is orthogonal to the magnetic 
potential at that point. The electric potential at a point 
is orthogonal to the magnetic potential in a manner 
consistent with Faraday’s law, the Ampere-Maxwell 
law and the right hand rule. The ratio of the magnetic 
potential to the electric potential of the binary photon 
throughout a period is equal to the speed of light. The 
relationships between the magnetic and the electrical 
properties at a point (P) are given in Table 1. 
     The time-independent functions 𝑈(𝑃) and 𝐺(𝑃) at 
any given point (𝑃) that are based on the magnetic 

potential 
𝒄𝑩

 and the electric potential 
𝒊𝑬

 of the 

binary photon are defined like so: 
  

      𝑈(𝑃) =  √2
𝑩 𝒌∙𝒓

𝒓
                      (2) 

                                                           
1 The fields can be obtained by taking the negative gradient of the 
potentials, and the potential energy can be obtained from the 
potential by multiplying the potential by the charge. 

 

𝐺(𝑃) =  √2
𝑬 𝒌∙𝒓

𝒓
       (3) 

 
Where, 𝜀  is the electric permittivity of the vacuum 
and 𝜇  is the magnetic permeability of the vacuum. 
While 𝑩 and 𝑬 are vectors that represent the magnetic 
flux density in the xz plane and the electric field in the 
yz plane [34], they will be treated as scalars, which is 
true for axially-symmetrical un-polarized light. This 
analysis can be extended for the case of polarized light 
where 𝑈(𝑃) and 𝐺(𝑃) would be vectors.  
     The normal derivative of Eqns. (2) and (3) are: 
 

(𝑃) =
(   

𝒓
) √

𝑩

𝒓

cos(𝒏 ∙ 𝒓)  

 

=
√

𝑩

𝒓
cos(𝒏 ∙ 𝒓)          (4) 

and 
 

(𝑃) =

(
  
  ) √

𝑬𝒐

cos(𝒏 ∙ 𝒓)  

 

=

√
𝑬

𝒓

 cos(𝒏 ∙ 𝒓)    (5) 

 
Since the ratio of the magnetic potential to the 
electric potential of the binary photon throughout a 
period is equal to the speed of light, 𝑐𝑩 = 𝑖𝑬 , and 
consistent with Faraday’s law and the Ampere-
Maxwell law, Eqns. (4) and (5) become: 
 

(𝑃) =
(   

𝒓
) √

𝒊𝑬𝒐

𝒓

cos(𝒏 ∙ 𝒓)    

 

=
√

𝒊𝑬𝒐
𝒓

cos(𝒏 ∙ 𝒓)     (6) 

  
and 
 

(𝑃) =

(
   

 ) √
𝑩

cos(𝒏 ∙ 𝒓)  
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=

√
𝑩

𝒓

 cos(𝒏 ∙ 𝒓)     (7) 

 
Taking the product of Eqns. (2) and (7) and Eqns. (3) 
and (6), we get: 
 
 

𝑈
𝒏

(𝑃) =
𝑩 ∙𝑩

𝒓
𝑖𝑘 − cos(𝒏 ∙ 𝒓)      (8a) 

 

𝐺
𝒏

(𝑃) =
𝑬 ∙ 𝑬

𝒓
𝑖𝑘 − cos(𝒏 ∙ 𝒓)  (8b) 

 
Green’s theorem requires that 
 

𝑈
𝒏

(𝑃) − 𝐺
𝒏

(𝑃) = 0  (9). 

 
We can show that this requirement is met by 
substituting Eqns. (8a) and (8b) into Eqn. (9):  
 

𝑩 ∙𝑩

𝒓
𝑖𝑘 − cos(𝒏 ∙ 𝒓) −  

 
𝑬 ∙ 𝑬

𝒓
𝑖𝑘 − cos(𝒏 ∙ 𝒓) = 0 (10) 

 

Since 𝜀 𝜇 =  , after rearranging, we get: 

 

  𝑐𝑩 ∙ 𝑐𝑩 − 𝑖𝑬 ∙ 𝑖𝑬  
𝜀𝑜

2 𝜇𝑜𝑘
2 

 

         
𝒓

𝑖𝑘 − cos(𝒏 ∙ 𝒓) = 0  (11) 

 
From Faraday’s law and the Ampere-Maxwell law, it 
follows that 𝑐𝑩𝒐 = 𝑖𝑬𝒐. Therefore we get: 
 

   𝑖𝑬 ∙ 𝑖𝑬 − 𝑖𝑬 ∙ 𝑖𝑬  
𝜀𝑜

2 𝜇𝑜𝑘
2 

 

             
𝒓

𝑖𝑘 − cos(𝒏 ∙ 𝒓) = 0 (12) 

 
indicating that the functions 𝑈 and 𝐺 and their first 
spatial derivatives satisfy the requirements for Green’s 
theorem. 
     According to the binary photon theory, the 
Dirichlet and Neumann boundary conditions are 
instantaneously and simultaneously satisfied by the 

following functional pairs: 𝑈(𝑃 ) = 𝑈(𝑃 ), 
𝒏

(𝑃 ) =

𝒏
(𝑃 ), 𝐺(𝑃 ) = 𝐺(𝑃 ), (𝑃 ) = (𝑃 ); 

𝑈
𝒏

(𝑃 ) = 𝑈
𝒏

(𝑃 ) and 𝐺 (𝑃 ) = 𝐺 (𝑃 ). 

Moreover, the fields do not vanish identically at an 
arbitrary surface as they would [27] according to 
Maxwell’s [26] description of light as an 
electromagnetic wave because in the binary photon, 
the electric field in the yz plane, which is a quadrature 
out-of-phase with the magnetic field in the xz plane, 
regenerates the magnetic field according to the 
Ampere-Maxwell law. Likewise, the magnetic field in 
the xz plane, which is a quadrature out-of-phase with 
the electric field in the yz plane, regenerates the 
electric field according to Faraday’s law. 𝑈 and 𝐺, 
which are twice  differentiable, represent light with a 
wavenumber 𝑘, and obey the Helmholtz equation: 
 

 (∇ +  𝑘 )𝑈 = 0          (13a) 
 

            (∇ + 𝑘 )𝐺 = 0                       (13b) 
 
Substituting Eqns. (13a) and (13b) into Eqn. (1), the 
RHS becomes: 
 
  ∭ 𝑈(−𝑘 𝐺) − 𝐺(−𝑘 𝑈) 𝑑𝑉 = 
 

∭ 𝑘 (𝐺𝑈 − 𝑈𝐺) 𝑑𝑉 (14) 
 
And since 𝐺𝑈 − 𝑈𝐺 on the RHS of Eqn. (14) 
vanishes, Eqn. (1) becomes: 
 

  ∭ (𝑈∇ 𝐺 − 𝐺∇ 𝑈) 𝑑𝑉= 
 

∬ 𝑈 − 𝐺 𝑑𝑆 = 0  (15) 

 
     Spherical waves are usually described as having 
spherical surfaces with constant phase. Here I describe 
spherical waves as a surface that subtends the 
propagation of binary photons along radial rays where 
the spherical surface simultaneously allows for the 
constant phase relationship between the electric and 
magnetic components that are quadrature out-of-
phase. The binary photons, with their orthogonal and 
alternating electric and magnetic compenents 
propagate from the luminous point source (𝑃 ) to point 
(𝑃 ) on arbitrary surface (𝑆 ). Since the point source 
(𝑃 ) represents a discontinuity that is incompatible 
with the assumptions of Green’s theorem, we have to 
apply limits during the integration of the surface 
surrounding the point source to remove 𝑃  from the 
arbitrary volume (𝑉 ) in the object space and describe 
𝑆  as being an arbitrary surface that is consistent with 
the assumptions of Green’s theorem where 

∬ 𝑈
𝒏

− 𝐺
𝒏

𝑑𝑆 vanishes (Fig. 2). To do this, we 

consider two surfaces 𝑆  and 𝑆  that surround a 
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volume (𝑉 ). The normals to the two surfaces point 
away from 𝑉 .  𝑆  is a spherical surface with radius 𝜖 

that excludes the source in volume (𝑉 = 𝜖 ) from 

𝑉 .  
 

 
 
 
 
 
 
 
 
 
 
Fig. 2: Definitions of the volume, surfaces, rays and vectors 
in the object space. 
 
     As a result of the oppositely directed normals 
surrounding 𝑉 , it follows from Eqn. (15) that the sum 

of the two surface integrals that make up ∬ 𝑈 −

𝐺 𝑑𝑆 also vanishes: 

 

∬ 𝑈 − 𝐺 𝑑𝑆 +  

 

∬ 𝑈 − 𝐺 𝑑𝑆 = 0  (16) 

 
Consequently,  
 

∬ 𝑈 − 𝐺 𝑑𝑆 =  

 

− ∬ 𝑈
𝒏

− 𝐺
𝒏

𝑑𝑆              (17) 

 
Substitute Eqns. (8a) and (8b) in Eqn. (17) and 
simplify to get: 

 

∬ 𝑈 − 𝐺 𝑑𝑆 =  

 

− ∬ 𝑖𝑘 − cos(𝒏 ∙ 𝝐)
𝑩 ∙𝑩

+

  𝑖
𝑬 ∙𝑬

𝑑𝑆                       (18) 

 
Since 𝜖 is a radius of 𝑆 , then 𝑑𝑆 = 𝜖 𝑑Ω, and Eqn. 
(18) becomes:  
 

∬ 𝑈 − 𝐺 𝑑𝑆 =  

 

∬ 𝑖𝑘 −
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

 𝜖 𝑑Ω    (19) 

 
Distribute 𝜖  and take the limit as 𝜖 → 0: 
 

lim
→

∬ 𝑖𝑘𝜖 − 𝑒
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

𝑑Ω =  

 

−4𝜋
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

 (20) 

 

Let 
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

= 𝐴 , which is the 

complex amplitude in  of the source point (𝑃 ). 

Now let 𝑟  represent the distance between 𝑃  and 𝑃  
on 𝑆 :  

∬ 𝑖𝑘 − cos(𝒏 ∙ 𝒓 )
𝑩 ∙𝑩

  +

        𝑖
𝑬 ∙𝑬

𝑑𝑆 = −4𝜋𝐴              (21) 

 
After rearranging, we get: 
 

𝐴 = − ∬ 𝑖𝑘 − cos(𝒏 ∙

𝒓 )
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

𝑑𝑆              (22) 

 

If 𝑘 ≫ , Eqn. (22) becomes: 

 

𝐴 = − ∬ 𝑖𝑘 cos(𝒏 ∙ 𝒓 )
𝑩 ∙𝑩

+

𝑖
𝑬 ∙𝑬

𝑑𝑆   (23) 

 
After taking 𝑖𝑘, which is assumed to be constant, out 
of the integral, we get: 
 

𝐴 = − ∬ cos(𝒏 ∙

𝒓 )
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

𝑑𝑆         (24) 

 
     Now consider the surfaces that surround a volume 
(𝑉 ) in the image space that excludes the image point 
(𝑃 ) and then let the surface nearest the image point 
vanish (Fig. 3). The surface normals point towards 𝑉 . 
𝑆  intersects with 𝑆  (Fig. 2) where there is a hole in 

such a way that at 𝑃  both 𝑈  and 𝐺  are 

continuous.  
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Fig. 3:  Definitions of the volume, surfaces, rays and vectors 
in the image space. 

 
     Some of the light incident on 𝑆  can be excluded 
from the image space by a perfectly conducting or 
perfectly black aperture support represented by 𝑆 . 

Both 𝑈  and 𝐺  vanish at every point on 𝑆 . 𝑆  

represents the surface which along with 𝑆  and 𝑆  
surrounds the volume in the image space containing 
the image point (𝑃 ). Since the image point (𝑃 ) 
represents a discontinuity that is incompatible with the 
assumptions of Green’s theorem, we have to remove 
𝑃  from volume (𝑉 ) just as we removed 𝑃  from 
volume (𝑉 ), and describe 𝑆 , 𝑆  and 𝑆  as being a 
surface that is consistent with the assumptions of 

Green’s theorem where ∬ 𝑈 − 𝐺 𝑑𝑆 vanishes. 

The complete surface integral surrounding 𝑉  is given 
by: 

 

∬ 𝑈 − 𝐺 𝑑𝑆 =   

  

∬ 𝑈 − 𝐺 𝑑𝑆 +  

 

∬ 𝑈 − 𝐺 𝑑𝑆 +  

  

∬ 𝑈 − 𝐺 𝑑𝑆 +  

 

∬ 𝑈 − 𝐺 𝑑𝑆 = 0       (25) 

 
Thus we can determine the value of the integral of the 
spherical surface that surrounds the image point: 
 

− ∬ 𝑈 − 𝐺 𝑑𝑆 =

∬ 𝑈 − 𝐺 𝑑𝑆 +

∬ 𝑈 − 𝐺 𝑑𝑆 + ∬ 𝑈 −

𝐺 𝑑𝑆     (26) 

 

Substitute Eqns. (8a) and (8b) into Eqn. (26) to get: 
 

∬ 𝑈 − 𝐺 𝑑𝑆 +

∬ 𝑈 − 𝐺 𝑑𝑆 + ∬ 𝑈 −

𝐺 𝑑𝑆 = − ∬ 𝑖𝑘 − cos(𝒏 ∙

𝝐𝟐)
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

𝑑𝑆   (27) 

 
Since  𝜖  is a radius of 𝑆 , then 𝑑𝑆 =  𝜖 𝑑Ω, and 
Eqn. (27) becomes:  
 

∬ 𝑈 − 𝐺 𝑑𝑆 +

∬ 𝑈 − 𝐺 𝑑𝑆 + ∬ 𝑈 −

𝐺 𝑑𝑆 = − ∬ 𝑖𝑘 − cos(𝒏 ∙

𝝐𝟐)
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

𝜖 𝑑𝜖   (28) 

 
Distribute 𝜖  and take the limit as 𝜖 → 0: 
 

lim
→

∬ 𝑖𝑘 −
𝑩 ∙𝑩

+

𝑖
𝑬 ∙𝑬

𝜖 𝑑Ω = − 4𝜋
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

(29) 

 

 Let 
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

= 𝐴 , which is the 

complex amplitude in  of the image point (𝑃 ), and 

Eqn. (28) becomes:  
 

∬ 𝑈 − 𝐺 𝑑𝑆 +

∬ 𝑈 − 𝐺 𝑑𝑆 + ∬ 𝑈 −

𝐺 𝑑𝑆 = −4𝜋𝐴     (30) 

 

Since Green’s theorem demands that 𝑈 − 

𝐺  vanishes on 𝑆 ,   ∬ 𝑈 −

𝐺 𝑑𝑆 = 0 and Eqn. (30) becomes: 

 

∬ 𝑈 − 𝐺 𝑑𝑆 +

∬ 𝑈 − 𝐺 𝑑𝑆 =  −4𝜋𝐴   (31) 

 
      If 𝑅 is considered to be so large that as 𝑅 → ∞, any 
light coming from 𝑆  would take so long to reach the 
image we can consider the contribution of 
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∬ 𝑈 − 𝐺 𝑑𝑆  to the image point to 

vanish. This is known as the Sommerfeld assumption. 
After letting 𝑟  represent the distance between 𝑃  and  
𝑃  and substituting Eqns. (8a) and (8b) into Eqn. (31), 
we get: 
 

𝐴  = − ∬ 𝑖𝑘 − cos(𝒏 ∙

𝒓 )
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

𝑑𝑆  (32) 

 

If 𝑘 ≫ , Eqn. (32) becomes: 

 

𝐴 = − ∬ 𝑖𝑘 cos(𝒏 ∙ 𝒓 )
𝑩 ∙𝑩

+

𝑖
𝑬 ∙𝑬

𝑑𝑆                         (33) 

 
Since 𝑖𝑘 is a constant, we can move it outside the 
integral to get: 
 

𝐴 = − ∬ cos(𝒏 ∙ 𝒓 )
𝑩 ∙𝑩

+

𝑖
𝑬 ∙𝑬

𝑑𝑆                         (34) 

 

     The complex amplitude 
𝑩 ∙𝑩

+ 𝑖
𝑬 ∙𝑬

 of 

the electromagnetic power that passes 𝑆  is equal to 
the amplitude at 𝑆 . Taking the sign of the cosines into 
consideration (Fig. 4), we can add Eqn. (34) (𝐴 =

− ∬ cos(𝒏 ∙ 𝒓 )
𝑩 ∙𝑩

+

𝑖
𝑬 ∙𝑬

𝑑𝑆 ) to Eqn. (24) (𝐴 =

− ∬ cos(𝒏 ∙ 𝒓𝒐𝟏)
𝑩 ∙𝑩

+

𝑖
𝑬 ∙𝑬

𝑑𝑆 ) and square it to get the intensity (in J 

m-2 s-1) of the light composed of binary photons 
diverging from the source in the object space, passing 
through the aperture and converging on the image 
point in the image space.  
  

 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 4: The definitions of rays and vectors at the opening of 
the aperture where the arbitrary surfaces surrounding the 
object space and the image space intersect.  

 
After cancelling signs, we get: 
 

𝐼 = ∬
( )

 [cos(𝒏 ∙ 𝒓 )] −  [cos(𝒏 ∙

𝒓 )]  𝑑𝑆    (35) 

 
     The squared modulus means to multiply the term 
inside the line brackets by its complex conjugate. The 
exponential in Eqn. (35) can also be written in terms 
of cosines and sines where one wave represents the 
magnetic component of light and the other represents 
the electrical component: 
 

𝐼 = ∬
( ) ( )

 [cos(𝒏 ∙

𝒓 )] −  [cos(𝒏 ∙ 𝒓 )]  𝑑𝑆              (36) 

      
     Thus the Kirchhoff diffraction integral can be 
derived based on the binary photon, with its alternating 
magnetic and electric components that simultaneously 
satisfy the Dirichlet and Newmann boundary 
conditions. As long as the wavelength is much smaller 
than the radius of the aperture and the radius of the 
aperture is much smaller than 𝑟  and 𝑟 , we can 
simplify the Kirchhoff diffraction equation based on 
the binary photon to account for Fresnel and 
Fraunhofer diffraction. When the assumptions are met, 
𝑟 𝑟  can be replaced by 𝑟 𝑟  and 
[ (𝒏∙𝒓 ) (𝒏∙𝒓 )]

 will not vary significantly over 

the aperture (Fig. 5). Consequently, 
[ (𝒏∙𝒓 ) (𝒏∙𝒓 )]

 can be moved outside the integral 

and Eqn. (35) becomes: 
 
𝐼 =

 [ (𝒏∙𝒓𝒐𝟏) (𝒏∙𝒓 )]
∬ 𝑒 ( )  𝑑𝑆  (37) 
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Moreover, if the angles that rays 𝑃 𝑃  and 𝑃 𝑃   make 
with ray 𝑃 𝑃  are small, then 𝑣 can be replaced by 
2 cos 𝛽, where 𝛽 is the angle between ray 𝑃 𝑃   and 
the normal (𝒏) to the aperture (Fig. 5), which gives: 
 

𝐼 = ∬ 𝑒 ( )  𝑑𝑆   (38) 

 
leaving only the phase inside the integral.  
 

Fig. 5:  𝛽 is the angle between ray 𝑃 𝑃  and the normal (𝒏). 
It is used for the Fresnel and Fraunhofer approximation 
when the angles that rays 𝑃 𝑃  and 𝑃 𝑃  make with ray 𝑃 𝑃  
are small. 
 

3. The two-dimensional diffraction 
pattern for apertures of various 
forms 

 
The Kirchhoff diffraction equation derived on the 
basis of the binary photon can be simplified to 
approximate the Fresnel and Fraunhofer diffraction 
patterns formed by various apertures [35-39]. Here we 
will use three Cartesian reference systems—one that 
contains the source plane that includes 𝑃 , with 
coordinates (𝑥 , 𝑦 , 2𝜁); one that contains the aperture 
plane that includes 𝑃 , with coordinates (𝜉, 𝜂, 𝜁); and 
one that contains the image plane that contains 𝑃 , 
with coordinates (𝑥 , 𝑦 , 𝑧 ). The three coordinate 
systems share the same 𝑧 axis, where 𝑧 = 0 at the 
image plane; 𝑧 = 𝜁 at the aperture plane; and 𝑧 = 2𝜁 
at the source plane. The common origin of the three 
coordinate systems is (0,0,0) in the image plane. The 
light propagates in the +𝑧 direction. According to the 
Huygens-Fresnel principle, we will integrate the 
contribution of each point (𝜉, 𝜂, 𝜁) on the aperture 
plane as if were a point source of light emitting binary 
photons in a radially-symmetrical manner so that they 
reach each point on the image plane, including 𝑃 .  

Define 
 

𝑟 = (𝑥 − 𝜉) + (𝑦 − 𝜂) + (2𝜁 − 𝜁)  (39a) 
 

𝑟 = (𝑥 − 𝜉) + (𝑦 − 𝜂) + (𝑧 − 𝜁)  (39b) 
 

𝑟 = (𝑥 − 0) + (𝑦 − 0) + (2𝜁 − 𝜁)  (39c) 
 

𝑟 = (𝑥 − 0) + (𝑦 − 0) + (2𝜁 − 𝜁)  (39d) 
 
which after simplifying gives: 
 

𝑟 = 𝑟 − 2(𝑥 𝜉 +  𝑦 𝜂) + 𝜉 +  𝜂  (40a) 
 

𝑟 = 𝑟 − 2(𝑥 𝜉 +  𝑦 𝜂) + 𝜉 +  𝜂  (40b) 
 

Since the dimensions of the aperture are small 
compared to 𝑟 and 𝑟 , we can expand 𝑟  as a power 

series in  and  and expand 𝑟  as power series in 

 and : 

 

𝑟 ≈ 𝑟 − + −
(  )

− ⋯   (41a) 

 

𝑟 ≈ 𝑟 − + −
(  )

− ⋯    (41b) 

 
Substitute Eqns. (41a) and (41b) into Eqn. (38) to get: 

 

𝐼 = ∬ 𝑒 ( , )  𝑑𝜉𝑑𝜂  (42) 

 
where (𝑟 + 𝑟 ) is now an explicit function 𝑓() of 𝜉 
and 𝜂.  
 

𝑓(𝜉, 𝜂) = − − + + −

(  )
−

(  )
− ⋯  (43) 

 
Let 𝑙 = − , 𝑚 = − , 𝑙 = − , and 𝑚 = −  

so that 𝑓(𝜉, 𝜂) can be written in terms of the direction 
cosines as: 
 

𝑓(𝜉, 𝜂) = (𝑙 − 𝑙)𝜉 + (𝑚 − 𝑚)𝜂 + +

 (𝜉 + 𝜂 ) −
(  )

−
(  )

…  (44) 

 
Inserting Eqn. (44) into Eqn. (42), we get: 
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𝐼 =

∬ 𝑒
( ) ( )  

(  ) (  )

 

  (45) 

 
 
Table 1. The Relationships between the Magnetic and the Electrical Properties at a Point (P). 
 

 
Magnetic Properties of Binary 
Photon 

Units 
Electric Properties of  
Binary Photon 

Units 

Potential 
𝑐𝐵

𝑘
(𝑃) V  (P) V 

Function 𝑈(𝑃) =
𝜀

𝜇
√2

𝑐𝑩

𝑘

𝑒 𝒌∙𝒓

𝒓
 

𝐴

√𝑉𝑚
 𝐺(𝑃) =  

𝜇

𝜀
√2

𝑖𝑬

𝑘

𝑒 𝒌∙𝒓

𝒓
 

𝑉

√𝐴𝑚
 

Normal 
Derivative of 
Function 

𝜕𝐺

𝜕𝒏
(𝑃) 

𝑉

√𝐴𝑚
 

𝜕𝑈

𝜕𝒏
(𝑃) 

𝐴

√𝑉𝑚
 

 𝑈
𝜕𝐺

𝜕𝒏
(𝑃) 

𝐴𝑉

𝑚
 𝐺

𝜕𝑈

𝜕𝒏
(𝑃) 

𝐴𝑉

𝑚
 

 𝑈
𝜕𝐺

𝜕𝒏
(𝑃) 𝑈

𝜕𝐺

𝜕𝒏
(𝑃)

∗

 
𝐽

𝑚 𝑠
 𝐺

𝜕𝑈

𝜕𝒏
(𝑃) 𝐺

𝜕𝑈

𝜕𝒏
(𝑃)

∗

 
𝐽

𝑚 𝑠
 

Amplitude of 
Power 

𝑐𝑩 ∙ 𝑩

2𝜇 𝑘
 

𝐽

𝑠
 

𝑐𝜀 𝑬 ∙ 𝑬

2𝑘
 

𝐽

𝑠
 

Power 
𝑐𝑩 ∙ 𝑩

2𝜇 𝑘
 

𝐽

𝑠
 

𝑐𝜀 𝑬 ∙ 𝑬

2𝑘
 

𝐽

𝑠
 

 
 
 
which is the integral based on the binary photon for 

Fresnel diffraction. When +  (𝜉 + 𝜂 ) −

(  )
−

(  )
 ≪ 2𝜋, the quadratic and 

higher terms can be neglected in 𝑓(𝜉, 𝜂), the diffracted 
binary photons can be treated as binary photons 
propagating along parallel rays, and we get the integral 
based on the binary photon for Fraunhofer diffraction: 
 

𝐼 = ∬ 𝑒 (( ) ( ) )  𝑑𝜉𝑑𝜂 (46) 

 

     By treating  as a constant, the diffracted 

binary photons can be treated as propagating along 
parallel rays. That is, the radially-symmetrical 
emission of binary photons from an object point and 
their propagation through an optical system can be 
represented by an integral whose integrand is a 
superposition of binary photons with various phases 
and directions of propagation. In order to solve the 

above integral equation, let 𝑝 = 𝑙 − 𝑙 and 𝑞 = 𝑚 −
𝑚, so that Eqn. (46) becomes: 

 

𝐼 = ∬ 𝑒 ( )  𝑑𝜉𝑑𝜂         (47) 

 

Let 𝐾 =  so Eqn. (47) becomes:  

 

𝐼 = 𝐾 ∬ 𝑒 ( )  𝑑𝜉𝑑𝜂         (48) 

      
     Fresnel [40,41] discovered that the intensity of light 
in the diffraction plane depends on the size and shape 
of the aperture that separates the object space from the 
image space. We will consider two shapes: a rectangle 
and a circle. Firstly, assume the aperture is a rectangle 
with sides equal to 2a and 2b. Integrate Eqn. (48) by 
parts: 
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𝐼 = 𝐾 ∫ ∫ 𝑒 ( )  𝑑𝜉𝑑𝜂 =

𝐾 ∫ 𝑒 ( )𝑑𝜉 ∫ 𝑒 ( )  𝑑𝜂     (49) 

 

Since ∫ 𝑒 ( )𝑑𝜉 = = 2𝑎  and 

 ∫ 𝑒 ( )  𝑑𝜂 = = 2𝑏 , then using 

the definition sinc(x) = , Eqn. (49) becomes:  

 

𝐼 = 𝐾 ∫ ∫ 𝑒 ( )  𝑑𝜉𝑑𝜂 =

        |4𝑎𝑏𝐾 sinc( 𝑘𝑝𝑎) sinc( 𝑘𝑞𝑏)|                       (50). 
 
The sinc function is equivalent to a zeroth-order 
spherical Bessel function of the first kind and the 
Fourier transform of a rectangular function. When the 

aperture is a narrow slit, 𝑏 ≫  , and sinc( 𝑘𝑞𝑏) varies 

rapidly with 𝑞 such that the intensity falls off rapidly 
with 𝑞 and the coherent line of light diffracted in the 𝑏 
direction acts like a point source of binary photons in 
the center of the slit. Thus for a slit, Eqn. (50) becomes 
 

𝐼 = |2𝑎𝐾 sinc( 𝑘𝑝𝑎)|    (51). 
 

     This diffraction integral based on the binary photon 
can also be used in spectroscopy to characterize the 
positions of the spectral lines formed by a slit [42,43].  
     Now consider a circular aperture with a radius 𝑎, 
let 𝜉 = 𝑎 cos 𝜃 and 𝜂 = 𝑎 sin 𝜃. Then 𝑓(𝜉, 𝜂) in the 
aperture plane becomes: 
 

𝑓(𝜉, 𝜂) = 𝑎(𝑝 cos 𝜃 + 𝑞 sin 𝜃) = 
 

𝑎 𝑝 + 𝑞 cos 𝜃 + sin 𝜃

 (52) 
 

Let 𝜌 represent the proportion of the distance along the 

radius of the aperture so that 𝜌 = 𝑝 + 𝑞 . Eqn. (52) 
becomes: 
 

𝑓(𝜉, 𝜂) = 𝑎𝜌 cos 𝜃 + sin 𝜃   (53) 

 
Since in the diffraction plane, = cos 𝜑 and =

sin 𝜑, then Eqn. (53) becomes 
 

𝑓(𝜉, 𝜂) = 𝑎𝜌(cos 𝜑 cos 𝜃 + sin 𝜑 sin 𝜃) =
𝑎𝜌 cos(𝜃 − 𝜑)   (54) 

 
and the diffraction integral based on the binary photon 
becomes: 
 

𝐼 = 𝐾 ∫ ∫ 𝑒 ( )  𝜌𝑑𝜌𝑑𝜃  (55) 

 
Due to axial symmetry around the optic (𝑧) axis, the 
solution of Eqn. (55) is independent of 𝜑. Without any 
loss of generality, we let 𝜑 = 0 and Eqn. (55) becomes  
 

𝐼 = 𝐾 ∫ ∫ 𝑒 ( )  𝜌𝑑𝜌𝑑𝜃  (56) 

 
     The integral cannot be reduced to fundamental 
rational functions such as sine, cosine, polynomial, 
logarithmic, or exponential functions. The integral can 
however be reduced to a Bessel function. The Bessel 
function can be defined by a series expansion around 
x = 0.  
     Using the definition of the Bessel function of the 

first kind of order zero: 𝐽 (𝑢) = ∫ 𝑒 𝑑𝑣, 

we get: 
 

 ∫ 𝑒 𝑑𝜃 = 2𝜋𝐽 (𝑘𝑎𝜌)  (57) 
 
And Eqn. (56) becomes: 
 

𝐼 = 2𝜋𝐾 ∫ 𝐽 (𝑘𝑎𝜌) 𝜌𝑑𝜌   (58) 

 
Change the variable so that 𝑘𝑎𝜌 = 𝑥,  𝜌 =  and 

𝑑𝜌 = 𝑑𝑥, then Eqn. (58) becomes: 

 

𝐼 = 2𝜋𝐾 ∫ 𝐽 (𝑘𝑎𝜌) 𝜌𝑑𝜌 =

2𝜋𝐾 ∫ 𝐽 (𝑥) =
( )

∫ 𝑥𝐽 (𝑥) 𝑑𝑥     

(59)  
 
Bessel functions of ascending orders are related by the 
recurrence relations where 
 

∫ 𝑥 𝐽 (𝑥)𝑑𝑥 = 𝑥 𝐽 (𝑥)  (60) 
 
Using Eqns. (59) and (60), letting 𝑛 = 0 and 
integrating from 𝑥 = 0 to 𝑥 =  𝑘𝑎𝜌, Eqn. (58) 
becomes: 
 

𝐼 =
( )

∫ 𝑥𝐽 (𝑥)𝑑𝑥 =
( )

𝑘𝑎 𝐽 (𝑥) =

2𝜋𝐾
( )

   (61) 

 
Which is the standard diffraction equation for a 
circular aperture.  

 
4. The three-dimensional diffraction 

pattern for a point source  
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According to geometrical optics, the image produced 
by a perfect lens is a point-by-point representation of 
the object [44]. The fact that a perfect image cannot be 
produced by an aberration-free lens led to the 
development of diffraction theory based on the wave 
theory of light [45,46].  
     Even with an aberration-free lens, the point-by-
point relation between the object and the image 
depends on the photon being a mathematical point for 
if the photon had extension, a point in the object space 
would be represented by a three-dimensional volume 
in the image space that was related to the diameter and 
length of the photon. Every image shows latero-axial 
astigmatism in that a point in the image plane is not 
represented by a point in the object plane but by a 
prolate ellipsoid with respect to the optic axis and a 
circle with respect to the focal plane [47-49]. 
Historically, the prolate ellipsoid along the axis was 
modelled geometrically as an infinite thin slit [50] and 
formally by the sine function, which is equivalent to a 
zeroth-order spherical Bessel function of the first kind 
and a Fourier transform of a rectangular function; and 
the circle [51] in the focal plane was modelled 
geometrically as a circle and formally by a first-order 
Bessel function of the first kind [52- 55].2 Based on 
these assumptions, Lommel [56, 57], Struve [58], and 
Schwarzschild [59] developed formulae to calculate 
the intensity far from the focal plane and this led to the 
standard treatment in describing the three-dimensional 
diffraction pattern produced by optical instruments 
[19,60-77]. 
      I have modelled the binary photon as a propagating 
oscillator/rotator composed of two equal and opposite 
charges that produce a transverse electric field with a 

maximal diameter of   and a maximal axial length 

equal to λ in a single period [33,34]. Is it possible that 
the fact that a spherical point source gives rise to 
latero-axial astigmatism is a consequence of light not 
being composed of geometrical points but astigmatic 
binary photons? Is it possible that the lateral and axial 
diffraction patterns can both be formally modelled by 
the same first-order Bessel function of the first kind 
after latero-axial astigmatism of the binary photon is 
taken into consideration? 
     For the analysis, I assume Fraunhofer diffraction 
where the diameter (2𝑎) of the aperture is much 
greater than the wavelength (𝜆). Consequently, the 
wave front at the aperture is considered to be a plane 
wave. The plane wave at the aperture can also be 

                                                           
2 The spherical Bessel differential equation for functions of order 

𝑚 is 𝑥 + 2𝐴 + (𝑥 − 𝑚(𝑚 + 1))𝑥 = 0 and the Bessel 

differential equation for functions of order 𝑛 is 𝑥 + 2𝐴 +

(𝑥 − 𝑛 )𝑥 = 0 where 𝐴 is an amplitude, 𝑥 is a distance, 𝑚 is an 

considered as the resultant of two sets of radially 
propagating binary photons travelling in opposite 
directions from 𝑃  and 𝑃  to 𝑃  on the shared surface 
(Fig. 6). The diffraction pattern is also considered to 
be planar.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: The plane at the aperture can be considered as the 
resultant of two sets of radially propagating binary photons 
travelling in opposite directions from 𝑃  and 𝑃  to 𝑃  on the 
shared surface. Likewise the plane wave can be considered 
to be the resultant of two diverging spherical waves that 
envelop the propagating binary photons travelling in 
opposite directions. The two sets of propagating binary 
photons meet simultaneously at any 𝑃  on the aperture plane 
and the aperture plane can be considered coincident with a 
plane wave (shown in red).     
 
     The three-dimensional diffraction pattern formed 
by a point source of light passing through a circular 
aperture can be determined according to Fig. 7 and the 
following definitions: 

 
𝜉 = 𝑎𝜌 sin 𝜃   (62a) 

 
𝜂 = 𝑎𝜌 cos 𝜃    (62b) 

 
𝜁 =     (62c) 

 
𝑥 = 𝑅 sin 𝜑   (62d) 

 
𝑦 = 𝑅 cos 𝜑   (62e) 

 

𝑧 = 𝜅    (62f) 

 

𝑅 =  𝑥 + 𝑦 + 𝑧   (62g) 
 

integer that serves as an index and n is a nonnegative integer that 
serves as the index. The solutions to these equations are a series of 
ascending powers of 𝑥. 
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where 𝜌 is a proportion of the radius 𝑎 of the aperture; 
𝜅 is a proportion of the length 𝑅 from the focal plane 
along the 𝑧 axis; and 𝜋 normalizes the axes of the 
Cartesian coordinate system relative to the asymmetry 
of the binary photon.  
 

 
 
Fig. 7: The relationship between a point on the aperture 
plane and a point on the diffraction plane. 
 
The ray (𝑟 ) from a point on the diffraction plane to a 
point in the aperture plane is given by the dot product 
of 𝑸 and 𝑹 such that: 
 

𝑟 = 𝑸 ∙ 𝑹 = 𝜉𝑥 + 𝜂𝑦 + 𝜁𝑧  (63) 
 

Substituting the definitions from Eqn. (62), we get: 
 

𝑸 ∙ 𝑹 = 𝑎𝜌 sin 𝜃 𝑅 sin 𝜑 + 𝑎𝜌 cos 𝜃 𝑅 cos 𝜑 + 
 

𝜁              (64) 

 
After rearranging and multiplying by 𝑘, we get: 
 
𝑘𝑸 ∙ 𝑹 = 𝑘𝑎𝜌𝑅(sin 𝜃 sin 𝜑) + 𝑘𝑎𝜌𝑅(cos 𝜃 cos 𝜑) + 
 

𝑘𝜁  (65) 

 

Letting 𝑣 = 𝑘𝑎𝑅 and 𝑢 = , Eqn. (65) becomes: 

 
𝑘𝑸 ∙ 𝑹 = 𝑣𝜌(sin 𝜃 sin 𝜑) + 𝑣𝜌(cos 𝜃 cos 𝜑) + 

 
𝑢𝜅 cos 𝛼  (66) 

 
After simplifying, we get: 
 

𝑘𝑸 ∙ 𝑹 = 𝑣𝜌 cos (𝜃 − 𝜑) + 𝑢𝜅 cos 𝛼 = 𝑘𝑟   (67) 
 

After substitution of Eqn. (67) into Eqn. (38), and 
assuming that the source is far from the aperture, we 
get: 

𝐼 =
2𝑖𝑘𝐴 cos 𝛽

4𝜋𝑟 𝑟
𝑒 ( ) 𝑑𝑆  

 

=  
2𝑖𝑘𝐴 cos 𝛽𝑒 ( )

4𝜋𝑟 𝑟
𝑒 (   ( )  ) 𝑑𝑆  

(68) 
 
After expanding the exponentials, we get: 
 

𝐼 = 
 

( )

∬ 𝑒 (   ( )) 𝑒 (  )   𝑑𝑆

  (69) 
 
Along the optic axis, 𝜌 = 0. Consequently 
𝑒 (   ( )) = 1 and the intensity of the axial 
diffraction pattern is given by: 
 

𝐼 = 
 

( )

 ∫ ∫ 𝑒 (  ) 𝜅𝑑𝜅 𝑑𝜃  

  (70) 
 

Since ∫ 𝑒 (  ) 𝑑𝜃 = 2𝜋𝐽 (𝑢𝜅), we get: 
 

𝐼 = 
( )

 ∫ 2𝜋𝐽 (𝑢𝜅) 𝜅𝑑𝜅  (71) 

 
     Taking the recurrence properties of the Bessel 
function as given in Eqn. (60) into consideration, the 
intensity of the axial diffraction pattern is given by: 
 

𝐼 = 
( ) ( )

    (72) 

 
 

which has the same functional form as the equation for 
the lateral diffraction pattern of a circular aperture. In 
the focal plane, 𝜅 = 0. Consequently, 𝑒 (  ) =
1 and the intensity of the diffraction pattern in the 
focal plane, given by Eqn. (69), is 
 

𝐼 = 
 

( )

 ∫ ∫ 𝑒 (   ( )) 𝜌𝑑𝜌 𝑑𝜃

  (73) 
 
Because the Bessel function is symmetrical around the 
optic axis, we let 𝜑 = 0 without loss of generality. 

Since ∫ 𝑒 (   ( )) 𝑑𝜃 = 2𝜋𝐽 (𝑣𝜌), we get: 
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𝐼 = 
( )

 ∫ 2𝜋𝐽 (𝑣𝜌) 𝜌𝑑𝜌 (74) 

 
 
Taking the recurrence properties of the Bessel function 
into consideration, the intensity of the lateral 
diffraction pattern is given by: 
  

𝐼 = 
( ) ( )

   (75) 

 
Eqn. (75) describes and explains the “spurious 
diameters” of objects viewed with optical instruments 
by Huygens [78], Herschel [79], Airy [80], and others 
since then. In general, the intensity of the three-
dimensional diffraction pattern is given by: 
 
 

𝐼 = 
( ) ( )

 
( )

  (76) 

 
where both the lateral and the axial diffraction pattern 
are formally modelled by the same first-order Bessel 
function of the first kind with different arguments. 

Since 𝑣 = 𝑘𝑎𝑅 and 𝑢 = , then  = = =

≅
 

=  and  

 
𝑢 = 𝑣   (77) 

 
Eqn. (76) can then be written as: 
 

𝐼 = 
( ) ( )

 
( )

 (78) 

 
where the intensities in the lateral and axial diffraction 
patterns are both described by the same first-order 
Bessel function of the first kind. However, the 
argument for the first-order Bessel function of the first 
kind in the axial part of the equation is increased by π 
to account for the astigmatic nature of the binary 
photon and modified by  to account for the 

properties of the optical system that produces the 
diffraction pattern. The lateral and axial diffraction 
patterns predicted by Eqn. (78) are illustrated in Fig. 
9. The ellipsoidal shape of the diffraction pattern is 
consistent with the elongated structure observed in the 
bright central portion of the diffraction image in a 
telescope [80] and in light and electron microscopes 
[81] that is responsible for the depth-of-focus which 
allows tolerance in finding the focal plane.  

 
 

 

 
Fig. 9: Illustration of the lateral (a) and axial (b) diffraction 
patterns predicted by Eqn. 78. 

 
 

5. The description of plane waves  
 

The functions 𝑈
𝒏

(𝑃) and 𝐺
𝒏

(𝑃) can also be used 

to describe the propagation of binary photons along 
parallel rays, which can be characterized as an 
electromagnetic plane wave, where the electrical and 
the magnetic components of light are a quadrature out-
of-phase. This description provides a solution to the 
standard form of Maxwell’s [26] wave equation: 

    

 ∇ Ψ =   (79) 
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For binary photons traveling in the 𝑧 direction along 

parallel rays, let Eqn. (8a) become 𝑈 (𝑃) =

𝑩 ∙𝑩
𝑒 (𝒌∙𝒛 ) and Eqn. (8b) become 𝐺 (𝑃) =

𝑖
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 ). Then assume that a solution to 

the wave equation is described by the following 
complex wave function: 
 

 Ψ =  
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) + 𝑖
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 ) (80) 

 
where the complex “wave” consists of a magnetic 
wave and an electric wave that are a quadrature out-
of-phase with each other in Euclidean space and 
Newtonian time, as predicted by the binary photon 
model. Plane waves are usually described as having 
planar surfaces with constant phase. Here we have to 
describe plane waves as having a planar surface with 
constant phase for two waves that are quadrature out-
of-phase. In order to prove that Eqn. (80) is a solution 
to the plane wave equation, we have to take the second 
spatial and temporal derivatives of Ψ. The first spatial 
derivative of Ψ is: 
 

= 𝑖𝑘
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) + 𝑖 𝑘
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 )   

(81) 
And the second spatial derivative of Ψ is: 
 

∇ Ψ = = 𝑖 𝑘
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) +

𝑖 𝑘
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 )       (82) 

 
The first temporal derivative of Ψ is: 
 

=  −i𝜔
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) +

𝑖 𝜔
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 )   (83) 

 
And the second temporal derivative of Ψ is: 
 

= =  𝑖 𝜔
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) +

𝑖 𝜔
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 )   (84) 

 

Setting ∇ Ψ = , we get: 

   

𝑖 𝑘
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) +

𝑖 𝑘
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 )  =

𝑖 𝜔
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) +

𝑖 𝜔
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 )                        (85) 

 
After cancelling 𝑒 (𝒌∙𝒛 ), we get 
 

𝑖 𝑘
𝑩 ∙𝑩

+ 𝑖 𝑘
𝑬 ∙𝑬

 =

𝑖 𝜔
𝑩 ∙𝑩

+ 𝑖 𝜔
𝑬 ∙𝑬

          (86) 

 
After simplifying, we get: 
 

𝑘
𝑩 ∙𝑩

+ 𝑖𝑘
𝑬 ∙𝑬

 =

𝜔
𝑩 ∙𝑩

+ 𝑖𝜔
𝑬 ∙𝑬

   (87) 

 
After solving the real and imaginary parts separately, 
we get: 
 

𝑘
𝑩 ∙𝑩

 =
𝑩 ∙𝑩

    (88a) 

 

𝑖𝑘
𝑬 ∙𝑬

=
𝑬 ∙𝑬

  (88b) 

 
After cancelling 𝑖 in Eqn. (88b), we get: 
 

𝑘
𝑬 ∙𝑬

=
𝑬 ∙𝑬

  (89) 

 
     We see that Ψ is a solution to the plane wave 

equation as long as 𝑐 =  for both the real part and 

the imaginary part. The intensity (I) of the plane wave 
is obtained by taking the product of the wave function 
(Ψ) and its complex conjugate (Ψ∗): 
 

I = ΨΨ∗ =
𝑩 ∙𝑩

𝑒 (𝒌∙𝒛 ) +

𝑖
𝑬 ∙𝑬

𝑒 (𝒌∙𝒛 ) =  
𝑩 ∙𝑩

+
𝑬 ∙𝑬

 (90) 

 
     When the emitter and observer are not in the same 
inertial frame, the electric and magnetic components 
undergo Dopplerization [82-87] and we get the 
relativistic second-order wave equation:   
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𝑐𝑐 ∇ Ψ = 𝑐
√

√
∇ Ψ =  (91) 

 

where 𝑐 =
√

√
=

 
 .       

     𝜗 is defined as the angle subtended by light rays 
extending from the source to the observer and the 
velocity (𝑣) vector that ends at the observer. As the 
relative velocity increases, 𝑘  decreases when 𝜗 
< , and 𝑘  increases when 𝜗 > . As a result, 

𝑐𝑐  remains constant in any and all inertial frames [31]. 
The complex wave solution to the above wave 
equation is: 
 

Ψ =  
𝑐𝑩 ∙ 𝑩

2𝜇 𝑘
𝑒

𝒌∙𝒛
√

√ + 

 

𝑖
𝑬 ∙𝑬

𝑒
(𝒌∙𝒛

√

√
)
  (92) 

 
where the amplitudes of the electric and magnetic 
components remain constant with velocity (𝑣 cos 𝜗) 
but the wave number varies with the velocity (𝑣 cos 𝜗) 
of the observer. To show that Eqn. (92) is a solution to 
Eqn. (91), take the second spatial and temporal 
derivatives of Eqn. (92): 
 

∇ Ψ = 𝑖 𝑘
𝑐𝑩 ∙ 𝑩

2𝜇 𝑘
𝑒

𝒌∙𝒛
√

√ + 

 

𝑖 𝑘
𝑬 ∙𝑬

𝑒
𝒌∙𝒛

√

√  (93a) 

 

=   

 

𝑖 𝜔
√𝑐 + 𝑣 cos 𝜗

√𝑐 − 𝑣 cos 𝜗

𝑐𝑩 ∙ 𝑩

2𝜇 𝑘
𝑒

𝒌∙𝒛
√

√

+ 

𝑖 𝜔
√

√

𝑬 ∙𝑬
𝑒

𝒌∙𝒛
√

√      (93b)                                                                                                       

 
Substitute Eqns. (93a) and (93b) into Eqn. (91) to get: 
 

c
√

√
𝑖 𝑘

𝑩 ∙𝑩
𝑒

𝒌∙𝒛
√

√ +

𝑖 𝑘
𝑬 ∙𝑬

𝑒
𝒌∙𝒛

√

√ =

𝑖 𝜔
√

√

𝑩 ∙𝑩
𝑒

𝒌∙𝒛
√

√ +

𝑖 𝜔
√

√

𝑬 ∙𝑬
𝑒

𝒌∙𝒛
√

√ (94) 

 
After cancelling like terms, we get: 
 

𝑘
𝑩 ∙𝑩

+ 𝑖𝑘
𝑬 ∙𝑬

=

𝜔
√

√

𝑩 ∙𝑩
+ 𝑖𝜔

√

√

𝑬 ∙𝑬
 (95) 

 
After solving the real and imaginary parts separately, 
we get: 
 

c 𝑘
𝑩 ∙𝑩

= 𝜔
√

√

𝑩 ∙𝑩
   (96a) 

 

𝑖𝑘
𝑬 ∙𝑬

= 𝑖𝜔
√

√

𝑬 ∙𝑬
 

(96b) 
 

Ψ is a solution to the plane wave equation as long as 

c
√

√
=  for both the real part and the 

imaginary part. When 𝑣 = 0 or 𝜗 = , =

= 𝑐 and Eqn. (91) reduces to Eqn. (79). The 

relationship between the wave number of the electric 
and magnetic components observed by an observer 
moving in an inertial frame relative to the wave 
number of the electric and magnetic components 
observed by an observer at rest with respect to the 
source is: 
 

𝑘 = 𝑘
√

√
= 𝑘

 
 

 (97) 
 
which is the equation for the relativistic Doppler effect 
for the binary photon. 

 
6. Conclusions 

 
The binary photon provides a way to understand with 
Euclidean space and Newtonian time, why particles 
with charge and/or a magnetic moment cannot exceed 
the speed of light [31]. The binary photon also 
provides a way to understand the deflection of starlight 
in Euclidian space and Newtonian time [32,84]. Here 
I have shown that the binary photon naturally provides 
the twoness required to satisfy the boundary 
conditions upon which Kirchhoff’s diffraction integral 
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in based without calling upon imaginary space as 
Sommerfeld (1964,2004) chose to do.  

In 1861, Maxwell gave the property of twoness to 
the ether (Fig. 10). Maxwell [88,89] described the 
ether in terms of electric and magnetic particles: 
“According to our hypothesis, the magnetic medium is 
divided into cells, separated by partitions formed of a 
stratum of particles which play the part of electricity. 
When the electric particles are urged in any direction, 
they will, by their tangential action on the elastic 
substance of the cells, distort each cell, and call into 
play an equal and opposite force arising from the 
elasticity of the cells. When the force was removed, the 
cells will recover their form, and the electricity will 
return to its former position.” 

 
 

 
Fig. 10: Maxwell’s conception of the luminiferous ether 
using a mechanical analogy. Notice the similarity between 
the electric and magnetic components in Maxwell’s 
mechanical ether and the electric and magnetic components 
in the binary photon [34]. 

 
In 1865, Maxwell [90] concluded that “light and 

magnetism are affectations of the same substance, and 
that light is an electromagnetic disturbance 
propagated though the field according to 
electromagnetic laws.” However, by investing some 
of the properties of electricity and magnetism in the 
ether, Maxwell had to divest light of those electric and 
magnetic properties in order to produce his 
electromagnetic wave theory of light. He did this by 
assuming that the divergence of the electric and 
magnetic fields vanished. This led directly to the 
conclusion that for light, which is electrically neutral, 
the electric and magnetic fields are in-phase.  

Henri Poincaré [23] and Arnold Sommerfeld 
[24,25] realized the conclusion that the electric and 
magnetic components are in-phase nullifies the 
assumptions upon which Kirchhoff’s diffraction 
integral was based and thus Kirchhoff’s integral 

lacked mathematical rigor. Sommerfeld saved the 
phenomena of the electric and magnetic components 
being in-phase by introducing imaginary space. 
Sommerfeld was then able to recover Kirchhoff’s 
diffraction integral based on his own first principles, 
which were based on the mathematical rigor of 
imaginary space. Sommerfeld [91] wrote, “we can 
confirm the results of the older theory, while we must 
declare as completely incorrect the methods through 
which they were derived.” Perhaps the introduction of 
imaginary space also lacks rigor. Olivier Darrigol [92] 
wrote that “From Newton to the present, the 
diffraction problem has never ceased to be a ground 
for conflict between physical intuition and 
mathematical rigor” and Richard Barakat [93] wrote, 
“One of the fundamental unsolved problems of optical 
diffraction theory is to understand why the Kirchhoff 
theory successfully predicts the intensity distributions 
in spite of the fact that from the mathematical 
standpoint the Kirchhoff theory appears to be a poor 
approximation to the rigorous formulation of the 
diffraction problem….”  

Here I show that the solution lies in the binary 
photon. By making the binary photon electrically 
neutral as a result of being composed of two equal and 
opposite electric charges [33,34], the electric and 
magnetic components of light are quadrature out-of-
phase and the boundary conditions for Kirchhoff’s 
diffraction integral are satisfied without the need for a 
mechanical ether. Thus image formation, which 
involves the diffraction of light by the specimen and 
the optical system, becomes completely 
comprehensible and mathematically rigorous in terms 
of the electromagnetic properties of light.  
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