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Relativistic Formulation of Maxwell’'s Equations for Free Space
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Einstein assumed in his Special Theory of Relatithat Maxwell's equations, including Faraday’s land the Ampere-
Maxwell equation, were invariant in any inertiahiine, and that the Lorentz transformation equationst be used when
two inertial frames were in relative motion. Stagtiwith a modification of the Ampere-Maxwell equetithat allows for
two observers of the magnetic field in differeneritial frames, | offer an alternative formulatiofi Maxwell's wave
equations for free space. The modification is basetvo equal but different definitions of the speé light. One definition
relates to the particle-like properties of lightdathe other relates to the wave-like propertiediglit. The proposed
formulation is consistent with the two postulatéste Special Theory of Relativity. The resultinguatjons, which are
invariant in any inertial frame and are based orclilaan space and Newtonian time, do not requiee ltbrentz
transformations. The resulting equations allowabisotropy in the electromagnetic waves that l¢éads anisotropy in the
Poynting vector that is able to act on a particith & charge and/or a magnetic moment moving thraugadiation field.
The anisotropy of the Poynting vector results idiation friction that opposes the movement of thetiple and limits the

velocity of the particle to the speed of light.

1. Introduction

Maxwell [1] developed his electrodynamic
equations in terms of absolute Euclidean space and
Newtonian time. Lorentz [2,3] assumed that
Maxwell's equations were true only in the inertial
frame of the ether that was characterized solely by
its electric permittivity and magnetic permeability
Lorentz further assumed that the electrodynamic
and optical phenomena existed in absolute
Euclidean space and Newtonian time, and that
mathematical tricks involving length contraction
and time dilation, known as the Lorentz
transformations, could be used to describe what
two observers in different inertial frames would
observe. Einstein [4] introduced as a postuldte “
principle of relativiy,” which states that the
equations that represent the fundamental laws of
physics such as Maxwell's equations, have the
same form in any inertial system. In order to edten
Maxwell's equations from one inertial system to all
inertial  systems, Einstein took Lorentz’
mathematical tricks seriously, required the use of
the Lorentz transformations, and proposed that time
and space were truly interdependent and relative.

Einstein also introduced a second postulate,
which states that in empty space, light propagates
with a definite velocity that is independent thie
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state of motion of the emitting body. In his paper,
Einstein extended the conjectures of corpuscular
mechanics to optical theory, but neglected the wave
properties that are equally important in optical
phenomena. The neglect of the wave properties led
to the conclusion that space and time were relative
guantities that depended on the relative velocity o
different observers. Inclusion of the wave
properties leads to the conclusion that space and
time are absolute and it is the wave properties of
light such as frequency and wavelength, or angular
frequency and angular wave number, and not space
and time that depend on the relative velocity of
different observers. Here | recast Maxwell's
equations for free space in a relativistic fornt ka
consistent with the two postulates of the Special
Theory of Relativity. | also show how the
anisotropy in the Poynting vectors results in
radiation friction that prevents particles with a
charge and/or a magnetic moment from going
faster than the speed of light.

2. Results and Discussion

The Special Theory of Relativity is founded on the
constancy of the speed of light. The speed of light
(c) can be defined in two ways. The first way,

which relates the speed of light to the electrical
permittivity (e,) of the vacuum and magnetic

permeability f,) of the vacuum, neglects the

wave-like properties of light:
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The second way to define the speed of light
takes the wave-like properties of frequeney &nd
wavelength {) or angular frequency «) and
angular wave numbek] into consideration:

= =%
c—v/l—k (2)

The two equations can be combined in a definition
of ¢2:

2 _ 1 o
c? = : 3)

v E€olto

It is the quadratic speed of light that is représén
in Maxwell's second-order electromagnetic wave
equation.

Egns. (1), (2) and (3) give definitions of the
speed of light that are applicable to any inertial
system but are not applicable to systems in uniform
motion relative to each other where the wave-like
properties of light are best described by the
Doppler effect expanded to second order with
respect to velocity [5]. The second-order Doppler
effect can account for the relativity of simultayei
[5], the optics of moving bodies [6-8], the
maximum speed of bodies with a charge and/or
magnetic moment [9,10], irreversibility [11] and
the inertia of energy [12] without the need to
introduce relative and interdependent four-
dimensional space-time.

When the emitting body (observer at source)
and another observerk f,server) are in inertial
frames moving relative to each other at velocity
the square of the vacuum speed of light is given by

4 _vcos 6
1 w N
Cz _ source c (4)

VEoMo kobserver\/l +”C°59
c

Where, 6 is defined as the angle subtended by a
light rays extending from the source to the observe
and the velocity vector that ends at the observer
(Fig. 1).6 = 0 when the velocity vector and light
ray are parallel anél = = when the velocity vector
and light ray are antiparallel.

188

Fig.1: The definition o, whereé is defined as the angle
subtended by a light rays extending from the sotice
the observer and the velocity)(vector that ends at the
observer

As the relative velocity increase%,,server
decreases wheh < - and increases wheh > 7.

As a result,c? remains constant in any and all
inertial frames [5]. Multiplying Eqn. (4) by

1_vc<;s€
1=

= ——— we get:

1_vcos 0’
\ c

vcos B vcos B
2 1 Wsource \Jl_ c N 1- c
c = JVEolo k vcos 6 vcos 6 (5)
oMo Kobserver 1+ . 1— .

which simplifies to:

2 1 Wsource 1_@
(6)

VEoMo Kobserver 1_"2 cos?6
2
c

While Egn. (6) shares similarities with the Lorentz
transformation equations, there are fundamental
differences. The cosines in both the numerator and

vcos O

the denominator iﬁjﬁ represent the spatial

11—
relationships between the velocity) (vector and
the observed light rayc)]. This contrasts with
Doppler’s principle for relative velocities givery b
Einstein [4], which is based on the Lorentz
transformations. In Einstein’s equation, the cosine
in the numerator represents the spatial relatignshi
between the observer and the source and the cosine
is absent in the denominator, which represents the
temporal relationship between the observer and the
source. Eqn. (6) reduces to Einstein’s Doppler
principle for relative velocities whenos?6 = 1.
Einstein’'s Doppler equation can be viewed
mathematically as a limiting case of Eqn. (6).

Cc
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Eqgn. (6) can be used to define the square root of
the product of the electric permittivity and the
magnetic permeability of the vacuum observed in
two inertial systems moving at relative velocity

1_17 cos 0
Wsource c (7)

c2Robserver 142C08 0
\ c

The product of the electric permittivity and the
magnetic permeability of the vacuum is a constant
that determines the magnitude of the
Dopplerization of the electromagnetic waves for an
observer at rest with the source and an observer
moving relative to the source.

The electric permittivity and the magnetic
permeability of the vacuum are the only constants
in Maxwell's equations. The form of Maxwell's
equations for free space that are applicable when
the source and the observer are in the same inertia
frame are given below:

vV 80#0 =

V-E=0 (8a)
V-B=0 (8b)
oB
VXE__E (8C)
oF
VXB= Eollo 57 (8d)

According to Eqn. (8c), which is a statement of
Faraday’s law, the linear displacement of a magnet
results in a circular electric field. The induced
electric field acts as an electromotive force et
drive a current in a wire. According to Eqgn. (8d),
which is a statement of the Ampere-Maxwell
equation for free space, a linear displacement
current transforms an electric field into a cireula
magnetic field. The Ampere-Maxwell equation
contains the constants,u, that are inversely
related to the square of the speed of light.

Because the Ampere-Maxwell equation
includes the speed of light, we can ask what the
magnetic field would look like to an observer at
rest with the source and an observer moving
relative to the source. By combining Egns. (1) and

4 veosé 2
k \ .
,So.uo observer Wthh

Wsource J vcoso 6’
c

(7), we gete, o =

lets us take both the particle-like and wave-like
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properties of the electric and magnetic fields in
Eqn. (8d) into consideratidnEqn. (8d) becomes:

1+vc056
g1 kobserver c 6_E
00 ysource 1_ucosB at
c

vcos 6
+—— ok

/ kobserver (9)
Wsource _ v?cos?0 at
—cz
c

After taking the curl of both sides, we get:

VXB=

1 vcos B
Kobserver + c JVXE

Wsource Jl _ v2cos?6 Ot
2
c

VXVXB=

EoMo (10)

Substituting Eqn. (8c) into Eqn. (10), we get:

vcos B

k 1+
VX VXB — /go.uo observer Zc . —
Wsource \/1 v2c0s20 Ot
2
[+

> (11)

Using the vector identit]f x Vx B =V(V-B) —
V2B, we get:

VxVxB=V({V-B)—V?B=

2
Kobserver 1+ 9°B

&,
ofto Wsource [ _ v2c0s20 Ot2
2
c

Since V- B = 0 for free space, after simplifying,
we get the second-order wave equation for the
magnetic field:

vcos 6
c

12)

14 UCC;SG 22B

v2c0s26 Ot2
c2

kobserver

Wsource \/1 _

V2B =

Eolo (13)

After rearranging we get:

! Individually, o, /€, and the impedance of free
spaceZ,) are given by:

vcos 6
1+——
kobserver 4

EoWsource \/1_” cos 6
c

Ji =

vcos 6
Kobserver c

HoWsource \/1_” cos 6
c

Jéo =



The African Review of Physics (2016):0024

1 1- vcosb 228
© —7
source Cc VZB — (14)

VEoMo Kobserver _ v2cos?9 at?
Yz
c

vcos O
Wsource c

VEokto Kobserver \/1 _

to c? yet includes the relative velocity between the
inertial frame of the source and the inertial fraofie
the observer. When the relative velocity vanishes

or 6 = +=, Eqn. (14) reduces to Maxwell's wave

equation for the magnetic field. Maxwell’'s wave
equation for the magnetic field can be viewed as a
limiting case of Eqn. (14), when the relative
velocity vanishes.

Starting with Eqn. (8c), we can derive the
second-order wave equation for the electric figid b
taking the curl of both sides.

Where,

is a constant equal

v2cos20
2

0VXB

VXVXE =— o

(15)

After substituting Eqn. (9) into Eqgn. (15), we get:

1+vc059

k
VXVXE = lso,uo observer c

Wsource 17200529 5t2

Using the vector identitfy xVXE =V(V-E) —
V2E and assuming thdf - E = 0 for free space,
we get a second-order wave equation for the
electric field:

1 v cos 6
V2E = \/— observer + Cc 62_E=
’1 _vcos@ at?
c

vcos 6
c

(16)

wsource

/8 u kobserver 1+
00 ysource _ v2cos?6 atz
2
c

After rearranging, we get:

(17)

vcos 6

1-— 2
1 Wsource c 2E — 0°E (18)

VEoMo Kobserver _ v2cos?9 a2
Yz
c

vcos O
Wsource c

VEoto Kobserver \/1 _

to c? yet includes the relative velocity between the
inertial frame of the source and the inertial fraofie

the observer. When the relative velocity vanishes
orf =+

Where,

is a constant equal

v2c0s20
2

+Z Eqn. (18) reduces to Maxwell's wave

equation for the electric field. Maxwell's wave
equation for the electric field can be viewed as a
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limiting case of Eqn. (18), when the relative
velocity vanishes

The essential difference between the
transformation equations given above, where
relative velocity is introduced into Maxwell's
equations and Einstein’s transformation equations,
where relative velocity is introducqzbst hocinto
Maxwell's equations, is whether it is the amplitude
of the field or the angular frequency/wave number
of the field that is relative. Einstein's [4]
transformations shows a velocity-dependent
transformation between the amplitudes of the
electric field and the magnetic field, where the
amplitudes of the fields are relative. In the
transformations given here, the amplitudes of the
electric and magnetic fields are invariant but ¢her
is a speed- and angle-dependent transformation of
the angular frequency/wave number of the electric
and magnetic fields. This is consistent with the
effect of relative motion observed in all otherdsn
of waves, including water waves and sound waves.
That all waves should be treated the same is in the
interest of what Ernst Mach [13] called the
economy of science.

The velocity-induced change in the wave
properties of the electric field and the magnetic
field means that even though the amplitudes of the
electric and magnetic fields remain constant when
the velocity changes, the time-averaged energy
densities (U), in J/n?) of the fields decrease as the
velocity increases whefd < g and the time-
averaged energy densitiegUf) of the fields
increase as the velocity increases wherr g By
necessity, the time-averaged radiation pressure
((P), in N/nf), which is equal to one-third of the
energy density, decreases when the velocity
increases whe® < g and increases when the

velocity increases wheh > g:

vcos 6
1 BZ 1-—
—(soE2 +—) <
2 Ho

2 2
1Y cozs 6
c

The energy in the radiation field can interact with
particles with a charge and/or a magnetic moment.
As a result, there is an anisotropy in the radiatio
pressure on moving particles that have a charge
and/or a magnetic moment:

(U) =3(P) = (19)

1 B2 1_vcosB
(P) = % (e,B2 + 2 ) —=
6 Ho v2c0s20

1- Z

(20)
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The product of the energy density and the speed
of light ¢ gives the power propagating in free space
per unit area. Again, by necessity, in free sptee,
power propagating per unit area decreases when the
velocity increases wheh < g and increases when

the velocity increases wheh > g The power

propagating per unit area is also known as the
Poynting vector (§), in J n¥ s%). Consequently,
the Poynting vector increases as the particle with
charge and/or magnetic moment moves towards a
source and decreases as the particle moves away:

B2 vcos O
c —
(8) = S(e,B? +2 ) —==
2 Ho v2cos20

-—

(21)

When a patrticle is at rest with respect to an
isotropic radiation field, the Poynting vector is
equal in all directions. For a particle moving
through the radiation field, that would be isotpi
to the particle at rest, the Poynting vectors bezom
anisotropic, being greater in front of the particle
and smaller behind the particle:

B2 1 vcos O
c _rvcosv
(8) = S(e,B? +2 ) —=
6 Ho v2c0s20

-—

(22)

Consequently, the anisotropic Poynting vector
resists the movement of any particle that contains
charge and/or a magnetic moment. The Poynting
vector that points towards the front of a moving
particle approaches infinity as the velocity of the
particle approaches the speed of light. The
anisotropy of the power per unit area resultingrfro
Dopplerization produces a resistance that limies th
velocity of the particle to the speed of light. rele
the resistance due to the Doppler effect is present
in terms of the Doppler-shifted electric and
magnetic fields. Although the Special Theory of
Relativity is based on the assumption of no frictio
this resistance is consistent with Einstein concept
of radiation friction that he introduced in 19091
Elsewhere | have presented the resistance due to
the second-order Doppler effect in terms of an
optomechanical counterforce [9,15], the time rate
of change of the magnetic vector potential [10,16],
and dark energy [17].

At the onset of the twentieth century, Walter
Ritz and Albert Einstein tried to reconcile thddi
of mechanics and electromagnetism [18] by
uncovering the essential problems that prevented
the unification of the two theories. Einstein ardue
that electromagnetism could be reconciled with
mechanics if Maxwell’'s equations were modified
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by making space and time relative while keeping
the speed of light constant. By contrast, Waltér Ri
argued that electromagnetism could be reconciled
with mechanics in terms of Euclidean space and
Newtonian time if Maxwell's equations were
modified by making the speed of light relative and
dependent on the velocity of its source. Here kehav
modified the Ampere-Maxwell equation, and
consequently, Maxwell's electromagnetic wave
equations, by keeping the speed of light constant
but making the angular frequency/wave number of
the source and observer relative in a velocity-
dependent manner. Unlike Einstein’s treatment that
makes the amplitudes of the electric and magnetic
fields dependent on relative velocity, my treatment
keeps the amplitudes of the electric and magnetic
fields constant but varies the angular
frequency/wave number of the waves that make up
the fields.

The Special Theory of Relativity, according to
John Norton [19], & the fruit of 19th century
electrodynamics. It is as much the theory that
perfects 19th century electrodynamics as it is the
first theory of modern physics. Until this
electrodynamics emerged, special relativity could
not arise; once it had emerged, special relativity
could not be stopped.

Here | show that modifying the Ampere-
Maxwell equation by expanding the constant to
allow for relative motion while still keeping the
term constant, | get a relativistically-invarianave
equation that describes the electric and magnetic
fields in Euclidean space and Newtonian time as
seen by two observers—one at rest with respect to
a source and one moving with respect to the source.
The wave-equation predicts anisotropy in the
frequency/wave number of the radiation that results
in an anisotropy of the Poynting vector for a
particle moving though a radiation field. Thus the
Special Theory of Relativity, which posits waves
moving isotropically through a four-dimensional
space-time continuum, is sufficient but not
necessary to explain the electrodynamic effects of
relative motion.
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